NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational & Applied Mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational & Applied Mathematics, 289, 2015, DOI: 10.1016/j.cam.2015.02.022
All documents in ORBi are protected by a user license.
[en] Stiction is a major failure in microelectromechanical system (MEMS) devices in which two contacting surfaces can remain stuck together because of the adhesive forces. Due to the difference between the surfaces roughness and the adhesive force range, the real contact areas are usually smaller than the apparent one, resulting in a scatter in the adhesive forces. Consequently, the stiction is an uncertain phenomenon. In this work, we develop a probabilistic model to predict the uncertainties of stiction due to the capillary forces acting on stiff materials. This model contains two levels: at the deterministic level, the model can predict the pull-out adhesive contact forces for a given surface topology; at the probabilistic level, the model generates independent identically distributed surfaces on which the deterministic solution can be applied to evaluate the uncertainties related to the stiction phenomenon.
The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011- 11-14) in the context of the ERA-NET MNT framework and by the Romanian UEFISCDI Agency contract ERA-NET MNT no 7-063 (2012-2015).
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 Romanian UEFISCDI Agency FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
De Boer, M., Capillary adhesion between elastically hard rough surfaces (2007) Exp. Mech., 47, pp. 171-183
Delrio, F.W., Dunn, M.L., De Boer, M.P., Van der waals and capillary adhesion of polycrystalline silicon micromachined surfaces (2013) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3, pp. 363-393. , B. Bhushan, NanoScience and Technology Springer Berlin, Heidelberg
Hertz, H., Ueber die berührung fester elastischer körper (1882) J. Reine Angew. Math., 92, pp. 156-171. , http://eudml.org/doc/148490
Johnson, K.L., Kendall, K., Roberts, A.D., Surface energy and the contact of elastic solids (1971) Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 324 (1558), pp. 301-313. , http://rspa.royalsocietypublishing.org/content/324/1558/301.abstract
Derjaguin, B., Muller, V., Toporov, Y., Effect of contact deformations on the adhesion of particles (1975) J. Colloid Interface Sci., 53 (2), pp. 314-326. , http://www.sciencedirect.com/science/article/pii/0021979775900181
Maugis, D., Adhesion of spheres: the JKR-DMT transition using a Dugdale model (1992) J. Colloid Interface Sci., 150 (1), pp. 243-269. , http://www.sciencedirect.com/science/article/pii/002197979290285T
Maugis, D., Gauthier-Manuel, B., JKR-DMT transition in the presence of a liquid meniscus (1994) J. Adhes. Sci. Technol., 8 (11), pp. 1311-1322
Cha, P.-R., Srolovitz, D.J., Kyle Vanderlick, T., Molecular dynamics simulation of single asperity contact (2004) Acta Mater., 52 (13), pp. 3983-3996. , http://www.sciencedirect.com/science/article/pii/S1359645404002769
Sun, W., The dynamic effect on mechanical contacts between nanoparticles (2013) Nanoscale, 5, pp. 12658-12669
Sun, W., Zeng, Q., Yu, A., Kendall, K., Calculation of normal contact forces between silica nanospheres (2013) Langmuir, 29 (25), pp. 7825-7837
Sun, W., Li, Y., Xu, W., Mai, Y.-W., Interactions between crystalline nanospheres: comparisons between molecular dynamics simulations and continuum models (2014) RSC Adv., 4, pp. 34500-34509
Cho, S.-S., Park, S., Finite element modeling of adhesive contact using molecular potential (2004) Tribology International, 37 (9), pp. 763-769. , http://www.sciencedirect.com/science/article/pii/S0301679X04000878
Nayak, P.R., Random process model of rough surfaces (1971) J. Tribol., 93 (3), pp. 398-407
Greenwood, J.A., Williamson, J.B.P., Contact of nominally flat surfaces (1966) Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 295 (1442), pp. 300-319
Greenwood, J., A simplified elliptic model of rough surface contact (2006) Wear, 261 (2), pp. 191-200. , http://www.sciencedirect.com/science/article/pii/S004316480500462X
Wu, L., Rochus, V., Noels, L., Golinval, J.C., Influence of adhesive rough surface contact on microswitches (2009) J. Appl. Phys., 106 (11), p. 113502. , http://link.aip.org/link/?JAP/106/113502/1
Wu, L., Noels, L., Rochus, V., Pustan, M., Golinval, J.-C., A micro-macro approach to predict stiction due to surface contact in micro electro-mechanical systems (2011) J. Microelectromech. Syst., 20 (4), pp. 976-990
Wu, L., Golinval, J.-C., Noels, L., A micro-model for elasto-plastic adhesive-contact in micro-switches: application to cyclic loading (2013) Tribol. Int., 57, pp. 137-146. , http://www.sciencedirect.com/science/article/pii/S0301679X12002757
Greenwood, J., Wu, J., Surface roughness and contact: an apology (2001) Meccanica, 36 (6), pp. 617-630
Ardito, R., Corigliano, A., Frangi, A., Modelling of spontaneous adhesion phenomena in micro-electro-mechanical systems (2013) Eur. J. Mech. A Solids, 39, pp. 144-152. , http://www.sciencedirect.com/science/article/pii/S0997753812001489
Ardito, R., Corigliano, A., Frangi, A., Rizzini, F., Advanced models for the calculation of capillary attraction in axisymmetric configurations (2014) Eur. J. Mech. A Solids, 47, pp. 298-308. , http://www.sciencedirect.com/science/article/pii/S0997753814000679
Shinozuka, M., Simulation of multivariate and multidimensional random processes (1971) J. Acoust. Soc. Am., 49 (1 B), pp. 357-368. , http://scitation.aip.org/content/asa/journal/jasa/49/1B/10.1121/1.1912338
Poirion, F., Soize, C., Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields (1995) Probabilistic Methods in Applied Physics, 451, pp. 17-53. , P. Krée, W. Wedig, Lecture Notes in Physics Springer Berlin, Heidelberg
Cai, S., Bhushan, B., Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts (2008) Mater. Sci. Eng. R Rep., 61 (1-6), pp. 78-106. , http://www.sciencedirect.com/science/article/pii/S0927796X08000296
Delrio, F.W., Dunn, M.L.D., De Boer, M.P., Capillary adhesion model for contacting micromachined surfaces (2008) Scr. Mater., 59 (9), pp. 916-920. , http://www.sciencedirect.com/science/article/pii/S1359646208001668, viewpoint set no. 44 "The materials for MEMS"
Asay, D.B., Kim, S.H., Evolution of the adsorbed water layer structure on silicon oxide at room temperature (2005) J. Phys. Chem. B, 109 (35), pp. 16760-16763. , http://pubs.acs.org/doi/abs/10.1021/jp053042o
Xue, X., Polycarpou, A.A., Meniscus model for noncontacting and contacting sphere-on-flat surfaces including elastic-plastic deformation (2008) J. Appl. Phys., 103 (2)
Kim, K.-S., Mcmeeking, R., Johnson, K., Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact (1998) J. Mech. Phys. Solids, 46 (2), pp. 243-266. , http://www.sciencedirect.com/science/article/pii/S0022509697000707
Jensen, B.D., De Boer, M., Masters, N., Bitsie, F., Lavan, D.A., Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in mems (2001) J. Microelectromech. Syst., 10 (3), pp. 336-346
Majumdar, A., Tien, C., Fractal characterization and simulation of rough surfaces (1990) Wear, 136 (2), pp. 313-327. , http://www.sciencedirect.com/science/article/pii/0043164890901543
Kogut, L., Jackson, R.L., A comparison of contact modeling utilizing statistical and fractal approaches (2006) J. Tribol., 128 (1), pp. 213-217
Archard, J.F., Elastic deformation and the laws of friction (1957) Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 243 (1233), pp. 190-205. , http://rspa.royalsocietypublishing.org/content/243/1233/190.abstract
Newland, D.E., (2012) An Introduction to Random Vibrations, Spectral & Wavelet Analysis, , Courier Dover Publications
Soize, C., (1993) Méthodes Mathématiques en Analyse du Signal, , Masson Paris
Mastrangelo, C., Hsu, C., A simple experimental technique for the measurement of the work of adhesion of microstructures (1992) Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest, pp. 208-212. , IEEE