Mitochondrion- and endoplasmic reticulum-induced SK channel dysregulation as a potential origin of the selective neurodegeneration in Parkinson’s disease
Drion, Guillaume; Sepulchre, Rodolphe; Seutin, Vincent
2012 • In Wellstead, Peter; Cloutier, Mathieu (Eds.) The Systems Biology of Parkinson's Disease
[en] Mitochondrial dysfunction and metabolic issues are known to have strong implications in the pathogenesis of Parkinson’s disease (PD). But it is also known that the neuronal loss leading to PD symptoms is selective for particular areas of the brain. In particular, the characteristic motor symptoms of PD are mainly due to abnormal neuronal activity in the basal ganglia, through the degeneration of substantia nigra pars compacta (SNc), but not ventral tegmental area (VTA), dopaminergic (DA) neurons. How a metabolic dysfunction triggers such a selective loss is considered from a range of perspectives in several contributions to this volume. The aim of this chapter is to investigate the potential role of small conductance calcium-activated potassium (SK) channels in this selective degeneration. Based on a recently proposed model and experimental data, we underline the fundamental role of SK channels in regulating the excitability of SNc DA neurons. The fact that SK channels do not play this regulating role in VTA DA neurons suggests the hypothesis that one reason for the preferential vulnerability of SNc DA neurons in Parkinson’s disease is that SK channels, which have a profound influence on their firing physiologically, are dysregulated by a dysfunction of mitochondria and/or endoplasmic reticulum.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Drion, Guillaume ; Université de Liège - ULiège > R&D Direction : Chercheurs ULiège en mobilité
Sepulchre, Rodolphe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Language :
English
Title :
Mitochondrion- and endoplasmic reticulum-induced SK channel dysregulation as a potential origin of the selective neurodegeneration in Parkinson’s disease
Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1267
Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142-2145
Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115:333-342
Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450-1455
Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719-723
Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 2:49
Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207-219
Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97-109
Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci U S A 108:12937-12942
Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:676-680
Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism-selective destruction of dopaminergic-neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546-4550
Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82:2173-2177
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301-1306
Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 64:646-661
Bezard E, Przedborski S (2011) A tale on animal models of Parkinson’s disease. Mov Disord 26:993-1002
Martinez TN, Greenamyre JT (2012) Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid Redox Signal. 16:920-934
Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2002) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197-211
Braak H, de Vos RA, Bohl J, Del Tredici K (2005) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease- related brain pathology. Neurosci Lett 396:67-72
Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548-S559
Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283-2301
Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653-661
Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742-1751
Lu L, Neff F, Fischer DA, Henze C, Hirsch EC, Oertel WH, Schlegel J, Hartmann A (2006) Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson’s disease: a post-mortem study in human control subjects. Neurobiol Dis 23:409-421
Gonzalez-Hernandez T, Afonso-Oramas D, Cruz-Muros I (2009) Phenotype, compartmental organization and differential vulnerability of nigral dopaminergic neurons. J Neural Transm Suppl 73:21-37
Gonzalez-Hernandez T, Cruz-Muros I, Afonso-Oramas D, Salas-Hernandez J, Castro- Hernandez J (2010) Vulnerability of mesostriatal dopaminergic neurons in Parkinson’s disease. Front Neuroanat 4:140
Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6:933-938
Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081-1086
Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29:11011-11019
Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249-256
Chan CS, Gertler TS, Surmeier DJ (2010) A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson’s disease. Mov Disord 25(Suppl 1): S63-S68
Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 47:175-182
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2010) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res 183:59-77
Ilijic E, Guzman JN, Surmeier DJ (2011) The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis 43:364-369
Cali T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. Biofactors 37:228-240
Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N, Matsumoto K, Hatzoglou M, Jin H, Feng Z (2011) Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One 6(8):e22354
Wang HQ, Takahashi R (2007) Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxid Redox Signal 9:553-561
Arduino DM, Esteves AR, Cardoso SM, Oliveira CR (2009) Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson’s disease. Neurochem Int 55:341-348
Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2864-2876
Brazhnik E, Shah F, Tepper JM (2008) GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. J Neurosci 28:10386-10398
Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645-656
Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414-15419
Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877-2890
Schumacher MA, Rivard AF, Bachinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120-1124
Maylie J, Bond CT, Herson PS, Lee WS, Adelman JP (2004) Small conductance Ca2+-activated K+ channels and calmodulin. J Physiol 554:255-261
Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709-1714
Vogalis F, Storm JF, Lancaster B (2003) SK channels and the varieties of slow afterhyperpolarizations in neurons. Eur J Neurosci 18:3155-3164
Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8:550
Shepard PD, Bunney BS (1988) Effect of apamin on the discharge properties of putative dopamine-containing neurons in vitro. Brain Res 463:380-384
Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp Brain Res 86:141-150
Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and omegaconotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 464:707-747
Seutin V, Johnson SW, North RA (1993) Apamin increases NMDA-induced burst firing of rat mesencephalic dopamine neurons. Brain Res 630:341-344
Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liegeois JF, Scuvee-Moreau J, Seutin V (2005) SK channel control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 22:3111-3121
Ji H, Hougaard C, Herrik KF, Str0baek D, Christophersen P, Shepard PD (2009) Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels. Eur J Neurosci 29:1883-1895
Herrik KF, Christophersen P, Shepard PD (2010) Pharmacological modulation of the gating properties of small conductance Ca2+-activated K+ channels alters the firing pattern of dopamine neurons in vivo. J Neurophysiol 104:1706-1735
Drion G, Massotte L, Sepulchre R, Seutin V (2010) How modeling can reconcile apparently discrepant experimental results: the case of dopaminergic neurons. PLoS Comput Biol 7(5):e1002050
Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-544
Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA, pp 95-129
Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small- conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443-3456
Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT, Cambridge, MA, pp 325-378
Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol 353:1-50
Noma A (1996) Ionic mechanisms of the cardiac pacemaker potential. Jpn Heart J 37:653-682
Lobb CJ, Wilson CJ, Paladini CA (2010) A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 104:403-413
Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301-304
Sarpal D, Koenig JI, Adelman JP, Brady D, Prendeville LC, Shepard PD (2004) Regional distribution of SK3 mRNA-containing neurons in the adult and adolescent rat ventral midbrain and their relationship to dopamine-containing cells. Synapse 53:104-113
Bishop MW, Chakraborty S, Matthews GA, Dougalis A, Wood NW, Festenstein R, Ungless MA (2010) Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi- deficient mice. J Neurophysiol 104:3009-3020
Yanovsky Y, Zhang W, Misgeld U (2005) Two pathways for the activation of small- conductance potassium channels in neurons of substantia nigra pars reticulata. Neuroscience 136:1027-1036
Stocker M (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5:758-768
Scuvee-Moreau J, Waroux O, Alleva L, Boland A, Graulich A, Liegeois JF, SeutinV (2005) T-type calcium channels do not play a major role in the activation of SK channels in rat midbrain dopaminergic neurons. Program No. 376.13. 2005 Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC, 2005. Online
Friel D (2004) Interplay between ER Ca2+ uptake and release fluxes in neurons and its impact on [Ca2+] dynamics. Biol Res 37:645-674
Coulon P, Herr D, Kanyshkova T, Meuth P, Budde T, Pape HC (2009) Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 46:333-346
Lee KH, Cho JH, Choi IS, Park HM, Lee MG, Choi BJ, Jang IS (2010) Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release. Neuroscience 169:106-116
Barsukova AG, Bourdette D, Forte M (2011) Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci 34:437-447
Steigerwald F, Potter M, Herzog J, Pinsker M, Kopper F, Mehdorn H, Deuschl G, Volkmann J (2008) Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. J Neurophysiol 100:2515-2524
Duda JE (2009) Olfactory system pathology as a model of Lewy neurodegenerative disease. J Neurol Sci 289:49-54
Huot P, Fox SH, Brotchie JM (2011) The serotonergic system in Parkinson’s disease. Prog Neurobiol 95(2):163-212
Hallworth NE, Wilson CJ, Bevan MD (2003) Apamin-sensitive small conductance calcium- activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci 23:7525-7542
Maher BJ, Westbrook GL (2005) SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb. J Neurophysiol 94:3743-3750
Rouchet N, Waroux O, Lamy C, Massotte L, Scuvee-Moreau J, Liegeois JF, Seutin V (2008) SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons. Eur J Neurosci 28:1108-1115
Sah P, McLachlan EM (1992) Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J Neurophysiol 68:1834-1841
Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F (2001) Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 281:C1727-C1733