[en] Exploiting the specific structure of neuron conductance-based models, the paper investigates the mathematical modeling of neuronal bursting modulation. The proposed approach combines singularity theory and geometric singular perturbations to capture the geometry of multiple time-scale attractors in the neighborhood of high-codimension singularities. We detect a three–time-scale bursting attractor in the universal unfolding of the winged cusp singularity and discuss the physiological relevance of the bifurcation and unfolding parameters in determining a physiological modulation of bursting. The results suggest generality and simplicity in the organizing role of the winged cusp singularity for the global dynamics of conductance-based models.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Franci, Alessio ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Drion, Guillaume ; Université de Liège - ULiège > R&D Direction : Chercheurs ULiège en mobilité
Sepulchre, Rodolphe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Modeling the Modulation of Neuronal Bursting: A Singularity Theory Approach
S. Astori, R. D. Wimmer, H. M Prosser, C. Corti, M. Corsi, N. Liaudet, A. Volterra, P. Franken, J. P. Adelman, and A. Lüthi, The CaV3.3 calcium channel is the major sleep spindle pacemaker in thalamus, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 13823-13828.
R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), pp. 413-439.
C Beurrier, P Congar, B Bioulac, and C Hammond, Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode, J. Neurosci., 19 (1999), pp. 599-609.
S.-N. Chow, B. Deng, and B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, J. Dynam. Differential Equations, 2 (1990), pp. 177-244.
S.-N. Chow, C. Li, and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, UK, 1994.
G. Drion, A. Franci, V. Seutin, and R. Sepulchre, A novel phase portrait for neuronal excitability, PLoS ONE, 7 (2012), e41806.
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), pp. 53-98.
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), pp. 445-466.
A. Franci, G. Drion, and R. Sepulchre, An organizing center in a planar model of neuronal excitability, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 1698-1722.
A. Franci, G. Drion, V. Seutin, and R. Sepulchre, A balance equation determines a switch in neuronal excitability, PLoS Comput. Biol., 9 (2013), e1003040.
M. Golubitsky, K. Josic, and T. J. Kaper, An unfolding theory approach to bursting in fast-slow systems, in Global Analysis of Dynamical Systems, Inst. Phys., Bristol, UK, 2001, pp. 277-308.
M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Appl. Math. Sci. 51, Springer-Verlag, New York, 1985.
J. Grasman, Asymptotic Methods for Relaxation Oscillations and Applications, Appl. Math. Sci. 63, Springer-Verlag, New York, 1987.
J. N. Guzman, J. Sánchez-Padilla, C. S. Chan, and D. J. Surmeier, Robust pacemaking in substantia nigra dopaminergic neurons, J. Neurosci., 29 (2009), pp. 11011-11019.
J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first-order differential equations, in Proc. Roy. Soc. Lond. B, 221 (1984), pp. 87-102.
M. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, Berlin, Germany, 1977.
A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), pp. 500-544.
E. M. Izhikevich, Neural excitability, spiking and bursting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), pp. 1171-1266.
E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, MA, 2007.
C. K. R. Jones, Geometric Singular Perturbation Theory, in Dynamical Systems, Lecture Notes in Math. 1609, Springer-Verlag, Berlin, 1995, pp. 44-120.
R. Krahe and F. Gabbiani, Burst firing in sensory systems, Nature Rev. Neurosci., 5 (2004), pp. 13-23.
M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), pp. 286-314.
M. Krupa and P. Szmolyan, Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity, 14 (2001), pp. 1473-1491.
M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), pp. 312-368.
Z. Liu, J. Golowasch, E. Marder, and L. F. Abbott, A model neuron with activity-dependent conductances regulated by multiple calcium sensors, J. Neurosci., 18 (1998), pp. 2309-2320.
E. F. Mishchenko and N. K. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Math. Concepts Methods Sci. Engrg. 13, Plenum, New York, 1980.
I. Putzier, P.H.M. Kullmann, J.P. Horn, and E.S. Levitan, CaV1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons, J. Neurosci., 29 (2009), pp. 15414-15419.
J. Rinzel, Excitation dynamics: Insights from simplified membrane models, Fed. Proc., 44 (1985), pp. 2944-2946.
J. Rinzel, A formal classification of bursting mechanisms in excitable systems, in Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Springer, New York, 1987, pp. 267-281.
S. M. Sherman, Tonic and burst firing: Dual modes of thalamocortical relay, Trends Neurosci., 24 (2001), pp. 122-126.
A. Shilnikov and M. Kolomiets, Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), pp. 2141-2168.
J. Su, J. Rubin, and D. Terman, Effects of noise on elliptic bursters, Nonlinearity, 17 (2004), pp. 133-157.
D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, SIAM J. Appl. Math., 51 (1991), pp. 1418-1450.
J.-C. Viemari and J.-M. Ramirez, Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons, J. Neurophysiol., 95 (2006), pp. 2070-2082.
X. J. Zhan, C. L. Cox, J. Rinzel, and S. M. Sherman, Current clamp and modeling studies of lowthreshold calcium spikes in cells of the cat's lateral geniculate nucleus, J. Neurophysiol., 81 (1999), pp. 2360-2373.