[en] Solubilisation of Co(III) from a heterogenite met in copper cobaltiferous oxide ore has been realized through reductive leaching using ferrous iron generated via bio-oxidation of pyrite. Biotic and abiotic experiments at various pulp densities and redox potentials have been performed and results compared. Cobalt leaching at elevated redox potential is possible, offering cost reduction benefits due to reduced consumption of ferrous iron. At elevated potential of 625 mV, however, the initial rate of cobalt leaching has been found as 115 mg/(g ore)⋅(24 h), lower than the rate of 865 mg/(g ore)⋅(24 h) registered at 505 mV. Less stochiometric amount of ferrous iron was required when cobalt leaching was coupled to pyrite bioleaching, with 75% of cobalt recovered for 12 h at the optimally found conditions. It could be inferred that the Fe3+–Fe2+ cycle exists and is efficiently maintained through bacterial presence in the studied system.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Zeka, Leon
Lambert, Fanny ; Université de Liège - ULiège > Département ArGEnCo > Traitement et recyclage des matières minérales
Frenay, Jean ; Université de Liège - ULiège > Relations académiques et scientifiques (Sciences appliquées)
Gaydardzhiev, Stoyan ; Université de Liège - ULiège > Département ArGEnCo > Traitement et recyclage des matières minérales
Ndala, Augustin
Language :
English
Title :
Possibilities for Co(III) dissolution from an oxidized ore through simultaneous bioleaching of pyrite
Publication date :
May 2015
Journal title :
Minerals Engineering
ISSN :
0892-6875
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A.D. Bailey, and G.S. Hansford Factors affecting bio-oxidation of sulphide minerals at high concentrations of solids: a review Biotechnol. Bioeng. 42 1993 1164 1174
S.C. Bouffard, B.F. Rivera-Vasquez, and D.G. Dixon Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media Hydrometallurgy 84 2006 225 238
A.P. Chandra, and A.R. Gerson The mechanisms of pyrite oxidation and leaching: a fundamental perspective Surf. Sci. Rep. 65 2010 293 315
C.L. Corkhill, and D.J. Vaughan Arsenopyrite oxidation - a review Appl. Geochem. 24 2009 2342 2361
F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport Production of Cobalt from the Copper-Cobalt Ores of the Central African Copperbelt 2011 Extractive Metallurgy of Nickel Cobalt and Platinum Group Metals (pp 377-391, Chapter 30)
Deliens, M.; 1974. Les oxydes hydratés de cobalt du Shaba méridional (République du Zaïre). Musée Royal de l'Afrique Centrale - Tervuren, Belgique. Annales. Série IN-8. Sciences Géologiques, n 76. p. XV.
S.T.L. Harrison, and A. Sissing Thermophilic mineral bioleaching performance: a compromise between maximising mineral loading and maximising microbial growth and activity SAIMM J. 2003 1 4
R.C. Hubli, J. Mittra, and A.K. Suri Reduction-dissolution of cobalt oxide in acid media: a kinetic study Hydrometallurgy 44 1997 114 125
P.R. Holmes, and F.K. Crundwel The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study Geochim. Cosmochim. Acta 64 2 2000 263 274
Tao Jiang, Li Qian, Yang Yong-bin, Li Guang-hui, and Qiu Guan-zhou Bio-oxidation of arsenopyrite Trans. Nonferrous Met. Soc. China 18 2008 1433 1438
M. McKibben, B. Tallant, and J. Del Angel Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions Appl. Geochem. 23 2 2008 121 135
Mermillod-Blondin R.; 2005. Influence des Propriétés Superficielles de la Pyrite sur la Rétention de Molécules Organiques Soufrées: Application à la Désulfuration des Résidus Miniers. Thèse de doctorat. Institut National Polytechnique de Lorraine en cotutelle avec Université de Montréal. 308 p; p. 2.
Miller, G.; 2009. Design of Copper-cobalt Hydrometallurgical Circuits. Paper presented to the ALTA Nickel-Cobalt Conference (ALTA 2009), Perth Australia.
Mulaba-Bafubiandi, A.F.; Ndalamo, J.; Mamba, B.B.; 2007. Microwave-assisted SO2 Flushed Acid Leaching of Mixed Cobalt-copper Oxidized Ores. The Fourth Southern African Conference on Base Metals - 'Africa's base metals resurgence'. The Southern African IMM.
Mustin C.; 1992. Approche Physico-chimique et Modélisation de l'oxydation Bactérienne de la Pyrite par Thiobacillus ferrooxidans: Rôle Déterminant de la Phase Minérale. Thèse Univ. Nancy 1. p. 222.
M.D. Mwema, M. Mpoyo, and K. Kafumbila Use of sulphur dioxide as reducing agent in cobalt leaching at Shituru hydrometallurgical plant SAIMM J. 2002
D.L. Purich Pratical aspects of measuring initial rates and reaction parameters Enzyme Kinet. Catal. Contr. 2010 217 218 (Chapter 4)
M. Pourbaix, N.D. Zoubov, and J.V. Muylder Atlas D'équilibres Électrochimiques 1963 Publication of the Belgian Centre for Corrosion Studies "Cebelcor" Gauthier-Villars, Paris p. 324
R. Ruitenberg, G.S. Hansford, M.A. Reuter, and A.W. Breed The ferric leaching kinetics of arsenopyrite Hydrometallurgy 52 1999 37 53
W. Sand, T. Gehrke, R. Hallmann, and A. Schippers Sulfur chemistry, biofilm, and the (in)direct attack mechanism - a critical evaluation of bacterial leaching Appl. Microbiol. Biotechnol. 43 1995 961 966
M.P. Silverman, and D.G. Lundgren Studies on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans. An improved medium and a harvesting procedure for securing high cell yields J. Bacteriol. 77 5 1959 642 647
Toniazzo, V.; 1998. Approche des Mécanismes d'oxydation de la pyrite par Thiobacillus Ferroxidans Grâce à la Modélisation Morpho-chimique de la Surface Minérale: Rôle Fondamental des Phases Superficielles Oxydées. Thèse. Université Henri Poincaré, 226 p.; p. 17.
J.-Y. Yu, T.J. McGenity, and M.L. Coleman Solution chemistry during the lag phase and exponential phase of pyrite oxidation by Thiobacillus ferrooxidans Chem. Geol. 175 3-4 2001 307 317
U.S. Geological Survey, 2014. Mineral Commodity Summaries: Cobalt.
Valencia, P.; Gentina, J.C.; Acevedo, F.; 2003. Effect of the pulp density and particle size on the biooxydation rate of a pyritic gold concentrate by Sulfolobusmetallicus. In: "Biohydrometallurgy: A Sustainable Technology in Evolution" 15th International Biohydrometallurgy Symposium (IBS 2003) September 14-19, Athens, Greece.
J.V. Wiertz, M. Mateo, and B. Escobar Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30 °C and 70 °C Hydrometallurgy 83 2006 35 39
L. Zeka Mujinga Etude de la Lixiviation du Cobalt (III) des Minerais Oxydés Cuprocobaltifères du Katanga par le fer (II) de la Biolixiviation de la Pyrite 2012 Université de Lubumbashi Mémoire de Diplôme d'Etudes Approfondies p. 106
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.