[en] We present an approach integrating structural and computational biology with immunological tests to identify epitopes in the OppA antigen from the Gram-negative pathogen Burkholderia pseudomallei, the etiological agent of melioidosis. The crystal structure of OppA(Bp), reported here at 2.1 A resolution, was the basis for a computational analysis that identified three potential epitopes. In parallel, antigen proteolysis and immunocapturing allowed us to identify three additional peptides. All six potential epitopes were synthesized as free peptides and tested for their immunoreactivity against sera from healthy seronegative, healthy seropositive, and recovered melioidosis patients. Three synthetic peptides allowed the different patient groups to be distinguished, underlining the potential of this approach. Extension of the computational analysis, including energy-based decomposition methods, allowed rationalizing results of the predictive analyses and the immunocapture epitope mapping. Our results illustrate a structure-based epitope discovery process, whose application may expand our perspectives in the diagnostic and vaccine design fields.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P.D. Adams, P.V. Afonine, G. Bunkóczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, and R.W. Grosse-Kunstleve PHENIX: a comprehensive Python-based system for macromolecular structure solution Acta Crystallogr. D Biol. Crystallogr. 66 2010 213 221
P.V. Afonine, R.W. Grosse-Kunstleve, V.B. Chen, J.J. Headd, N.W. Moriarty, J.S. Richardson, D.C. Richardson, A. Urzhumtsev, P.H. Zwart, and P.D. Adams phenix.model-vs-data: a high-level tool for the calculation of crystallographic model and data statistics J. Appl. Cryst. 43 2010 669 676
H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma The missing term in effective pair potentials J. Phys. Chem. 91 1987 6269 6271
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne The Protein Data Bank Nucleic Acids Res. 28 2000 235 242 (Pubitemid 30047768)
R.P. Berntsson, N. Alia Oktaviani, F. Fusetti, A.M. Thunnissen, B. Poolman, and D.J. Slotboom Selenomethionine incorporation in proteins expressed in Lactococcus lactis Protein Sci. 18 2009 1121 1127
E. Borezee, E. Pellegrini, and P. Berche OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival Infect. Immun. 68 2000 7069 7077 (Pubitemid 32463421)
V.B. Chen, W.B. Arendall 3rd, J.J. Headd, D.A. Keedy, R.M. Immormino, G.J. Kapral, L.W. Murray, J.S. Richardson, and D.C. Richardson MolProbity: all-atom structure validation for macromolecular crystallography Acta Crystallogr. D Biol. Crystallogr. 66 2010 12 21
A.C. Cheng, and B.J. Currie Melioidosis: epidemiology, pathophysiology, and management Clin. Microbiol. Rev. 18 2005 383 416 (Pubitemid 40548298)
S. Colacino, G. Tiana, R.A. Broglia, and G. Colombo The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions Proteins 62 2006 698 707 (Pubitemid 43191256)
S. Colacino, G. Tiana, and G. Colombo Similar folds with different stabilization mechanisms: the cases of Prion and Doppel proteins BMC Struct. Biol. 6 2006 17
Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography Acta Crystallogr. D Biol. Crystallogr. 50 1994 760 763
B.J. Currie, D.A. Dance, and A.C. Cheng The global distribution of Burkholderia pseudomallei and melioidosis: an update Trans. R. Soc. Trop. Med. Hyg. 102 Suppl 1 2008 S1 S4
X. Daura, K. Gademann, B. Jaun, D. Seebach, W.F. van Gunsteren, and A.E. Mark Peptide folding: when simulation meets experiment Angew. Chem. Int. Ed. Engl. 38 1999 236 240 (Pubitemid 29051239)
P.R. Dormitzer, J.B. Ulmer, and R. Rappuoli Structure-based antigen design: a strategy for next generation vaccines Trends Biotechnol. 26 2008 659 667
P. Dunten, and S.L. Mowbray Crystal structure of the dipeptide binding protein from Escherichia coli involved in active transport and chemotaxis Protein Sci. 4 1995 2327 2334
P. Emsley, and K. Cowtan Coot: model-building tools for molecular graphics Acta Crystallogr. D Biol. Crystallogr. 60 2004 2126 2132 (Pubitemid 41742764)
P. Evans Scaling and assessment of data quality Acta Crystallogr. D Biol. Crystallogr. 62 2006 72 82
P.L. Felgner, M.A. Kayala, A. Vigil, C. Burk, R. Nakajima-Sasaki, J. Pablo, D.M. Molina, S. Hirst, J.S. Chew, and D. Wang A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens Proc. Natl. Acad. Sci. USA 106 2009 13499 13504
S. Fiorucci, and M. Zacharias Prediction of protein-protein interaction sites using electrostatic desolvation profiles Biophys. J. 98 2010 1921 1930
H.S. Garmory, and R.W. Titball ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies Infect. Immun. 72 2004 6757 6763 (Pubitemid 39552342)
A. Genoni, G. Morra, and G. Colombo Identification of domains in protein structures from the analysis of intramolecular interactions J. Phys. Chem. B 116 2012 3331 3343
D.N. Harland, K. Chu, A. Haque, M. Nelson, N.J. Walker, M. Sarkar-Tyson, T.P. Atkins, B. Moore, K.A. Brown, and G. Bancroft Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis Infect. Immun. 75 2007 4173 4180 (Pubitemid 47206316)
G.D. Healey, S.J. Elvin, M. Morton, and E.D. Williamson Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection Infect. Immun. 73 2005 5945 5951 (Pubitemid 41193033)
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation J. Chem. Theory Comput. 4 2008 435 447
C. Koehler, L. Carlier, D. Veggi, E. Balducci, F. Di Marcello, M. Ferrer-Navarro, M. Pizza, X. Daura, M. Soriani, R. Boelens, and A.M. Bonvin Structural and biochemical characterization of NarE, an iron-containing ADP-ribosyltransferase from Neisseria meningitidis J. Biol. Chem. 286 2011 14842 14851
A.G. Leslie The integration of macromolecular diffraction data Acta Crystallogr. D Biol. Crystallogr. 62 2006 48 57
V.M. Levdikov, E.V. Blagova, J.A. Brannigan, L. Wright, A.A. Vagin, and A.J. Wilkinson The structure of the oligopeptide-binding protein, AppA, from Bacillus subtilis in complex with a nonapeptide J. Mol. Biol. 345 2005 879 892 (Pubitemid 39600940)
A.J. McCoy Solving structures of protein complexes by molecular replacement with Phaser Acta Crystallogr. D Biol. Crystallogr. 63 2007 32 41
V. Monnet Bacterial oligopeptide-binding proteins Cell. Mol. Life Sci. 60 2003 2100 2114 (Pubitemid 37357419)
G. Morra, and G. Colombo Relationship between energy distribution and fold stability: insights from molecular dynamics simulations of native and mutant proteins Proteins 72 2008 660 672 (Pubitemid 351928520)
G.N. Murshudov, A.A. Vagin, and E.J. Dodson Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr. D Biol. Crystallogr. 53 1997 240 255 (Pubitemid 27235885)
M. Nelson, J.L. Prior, M.S. Lever, H.E. Jones, T.P. Atkins, and R.W. Titball Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis J. Med. Microbiol. 53 2004 1177 1182 (Pubitemid 40052471)
A. Nuccitelli, R. Cozzi, L.J. Gourlay, D. Donnarumma, F. Necchi, N. Norais, J.L. Telford, R. Rappuoli, M. Bolognesi, and D. Maione Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections Proc. Natl. Acad. Sci. USA 108 2011 10278 10283
G. Ofek, F.J. Guenaga, W.R. Schief, J. Skinner, D. Baker, R. Wyatt, and P.D. Kwong Elicitation of structure-specific antibodies by epitope scaffolds Proc. Natl. Acad. Sci. USA 107 2010 17880 17887
A.W. Purcell, J. McCluskey, and J. Rossjohn More than one reason to rethink the use of peptides in vaccine design Nat. Rev. Drug Discov. 6 2007 404 414 (Pubitemid 46696551)
L. Ragona, G. Colombo, M. Catalano, and H. Molinari Determinants of protein stability and folding: comparative analysis of beta-lactoglobulins and liver basic fatty acid binding protein Proteins 61 2005 366 376 (Pubitemid 41429144)
M. Sarkar-Tyson, and R.W. Titball Progress toward development of vaccines against melioidosis: a review Clin. Ther. 32 2010 1437 1445
G. Scarabelli, G. Morra, and G. Colombo Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping Biophys. J. 98 2010 1966 1975
O. Schneewind, and D. Missiakas Structural vaccinology to thwart antigenic variation in microbial pathogens Proc. Natl. Acad. Sci. USA 108 2011 10029 10030
S.H. Sleigh, P.R. Seavers, A.J. Wilkinson, J.E. Ladbury, and J.R. Tame Crystallographic and calorimetric analysis of peptide binding to OppA protein J. Mol. Biol. 291 1999 393 415 (Pubitemid 29381435)
M. Soriani, P. Petit, R. Grifantini, R. Petracca, G. Gancitano, E. Frigimelica, F. Nardelli, C. Garcia, S. Spinelli, and G. Scarabelli Exploiting antigenic diversity for vaccine design: the chlamydia ArtJ paradigm J. Biol. Chem. 285 2010 30126 30138
D. Suwannasaen, J. Mahawantung, W. Chaowagul, D. Limmathurotsakul, P.L. Felgner, H. Davies, G.J. Bancroft, R.W. Titball, and G. Lertmemongkolchai Human immune responses to Burkholderia pseudomallei characterized by protein microarray analysis J. Infect. Dis. 203 2011 1002 1011
M. Tanabe, H.S. Atkins, D.N. Harland, S.J. Elvin, A.J. Stagg, O. Mirza, R.W. Titball, B. Byrne, and K.A. Brown The ABC transporter protein OppA provides protection against experimental Yersinia pestis infection Infect. Immun. 74 2006 3687 3691 (Pubitemid 43794564)
M. Tanabe, O. Mirza, T. Bertrand, H.S. Atkins, R.W. Titball, S. Iwata, K.A. Brown, and B. Byrne Structures of OppA and PstS from Yersinia pestis indicate variability of interactions with transmembrane domains Acta Crystallogr. D Biol. Crystallogr. 63 2007 1185 1193 (Pubitemid 350134952)
G. Tiana, F. Simona, G.M. De Mori, R.A. Broglia, and G. Colombo Understanding the determinants of stability and folding of small globular proteins from their energetics Protein Sci. 13 2004 113 124 (Pubitemid 38021146)
P. Tippayawat, W. Saenwongsa, J. Mahawantung, D. Suwannasaen, P. Chetchotisakd, D. Limmathurotsakul, S.J. Peacock, P.L. Felgner, H.S. Atkins, and R.W. Titball Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei PLoS Negl. Trop. Dis. 3 2009 e407
W.F. van Gunsteren, D. Bakowies, R. Baron, I. Chandrasekhar, M. Christen, X. Daura, P. Gee, D.P. Geerke, A. Glättli, and P.H. Hünenberger Biomolecular modeling: goals, problems, perspectives Angew. Chem. Int. Ed. Engl. 45 2006 4064 4092 (Pubitemid 44105659)
E. Westhof, D. Altschuh, D. Moras, A.C. Bloomer, A. Mondragon, A. Klug, and M.H. Van Regenmortel Correlation between segmental mobility and the location of antigenic determinants in proteins Nature 311 1984 123 126 (Pubitemid 14072200)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.