[en] We solved the crystal structure of Burkholderia pseudomallei acute phase antigen BPSL2765 in the context of a structural vaccinology study, in the area of melioidosis vaccine development. Based on the structure, we applied a recently developed method for epitope design that combines computational epitope predictions with in vitro mapping experiments and successfully identified a consensus sequence within the antigen that, when engineered as a synthetic peptide, was selectively immunorecognized to the same extent as the recombinant protein in sera from melioidosis-affected subjects. Antibodies raised against the consensus peptide were successfully tested in opsonization bacterial killing experiments and antibody-dependent agglutination tests of B. pseudomallei. Our strategy represents a step in the development of immunodiagnostics, in the production of specific antibodies and in the optimization of antigens for vaccine development, starting from structural and physicochemical principles.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
C. Aagaard, T. Hoang, J. Dietrich, P.J. Cardona, A. Izzo, G. Dolganov, G.K. Schoolnik, J.P. Cassidy, R. Billeskov, and P. Andersen A multistage tuberculosis vaccine that confers efficient protection before and after exposure Nat. Med. 17 2011 189 194
H. Berendsen, J.R. Grigera, and T.P. Straatsma The missing term in effective pair potentials J. Phys. Chem. 91 1987 6269 6271
P.J. Brett, and D.E. Woods Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates Infect. Immun. 64 1996 2824 2828
C.G. Bull The agglutination of bacteria in vivo J. Exp. Med. 22 1915 484 491
S. Chanchamroen, C. Kewcharoenwong, W. Susaengrat, M. Ato, and G. Lertmemongkolchai Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects Infect. Immun. 77 2009 456 463
A.C. Cheng, and B.J. Currie Melioidosis: epidemiology, pathophysiology, and management Clin. Microbiol. Rev. 18 2005 383 416
J. Cuccui, T.S. Milne, N. Harmer, A.J. George, S.V. Harding, R.E. Dean, A.E. Scott, M. Sarkar-Tyson, B.W. Wren, R.W. Titball, and J.L. Prior Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region Infect. Immun. 80 2012 1209 1221
X. Daura, K. Gademann, B. Jaun, D. Seebach, W.F. Van Gunsteren, and A.E. Mark Peptide folding: When simulation meets experiment Angew. Chem. Int. Ed. Engl. 38 1999 236 240
P.R. Dormitzer, J.B. Ulmer, and R. Rappuoli Structure-based antigen design: a strategy for next generation vaccines Trends Biotechnol. 26 2008 659 667
A.M. Egan, and D.L. Gordon Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes Infect. Immun. 64 1996 4952 4959
P.L. Felgner, M.A. Kayala, A. Vigil, C. Burk, R. Nakajima-Sasaki, J. Pablo, D.M. Molina, S. Hirst, J.S. Chew, and D. Wang A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens Proc. Natl. Acad. Sci. USA 106 2009 13499 13504
S. Fiorucci, and M. Zacharias Prediction of protein-protein interaction sites using electrostatic desolvation profiles Biophys. J. 98 2010 1921 1930
Y. Fujita, and H. Taguchi Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles Chem. Cent. J. 5 2011 48
Y. Hara, R. Mohamed, and S. Nathan Immunogenic Burkholderia pseudomallei outer membrane proteins as potential candidate vaccine targets PLoS ONE 4 2009 e6496
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl GROMACS 4: algorithms for highly efficient load-balanced, and scalable molecular simulation J. Chem. Theory Comput. 4 2008 435 447
C. Koehler, L. Carlier, D. Veggi, E. Balducci, F. Di Marcello, M. Ferrer-Navarro, M. Pizza, X. Daura, M. Soriani, R. Boelens, and A.M. Bonvin Structural and biochemical characterization of NarE, an iron-containing ADP-ribosyltransferase from Neisseria meningitidis J. Biol. Chem. 286 2011 14842 14851
P. Lassaux, C. Peri, M. Ferrer-Navarro, L.J. Gourlay, A. Gori, O. Conchillo-Solé, D. Rinchai, G. Lertmemongkolchai, R. Longhi, and X. Daura A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen Structure 21 2013 167 175
H. Li, X.P. Xiong, B. Peng, C.X. Xu, M.Z. Ye, T.C. Yang, S.Y. Wang, and X.X. Peng Identification of broad cross-protective immunogens using heterogeneous antiserum-based immunoproteomic approach J. Proteome Res. 8 2009 4342 4349
F.T. Liu, M. Zinnecker, T. Hamaoka, and D.H. Katz New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugates Biochemistry 18 1979 690 693
M. Nelson, J.L. Prior, M.S. Lever, H.E. Jones, T.P. Atkins, and R.W. Titball Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis J. Med. Microbiol. 53 2004 1177 1182
A. Nuccitelli, R. Cozzi, L.J. Gourlay, D. Donnarumma, F. Necchi, N. Norais, J.L. Telford, R. Rappuoli, M. Bolognesi, and D. Maione Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections Proc. Natl. Acad. Sci. USA 108 2011 10278 10283
A.A. Pal'tsyn, E.G. Kolokol'chikova, A.K. Badikova, N.V. Chervonskaia, and I.A. Grishina [The role of agglutination during bacterial infection] Biull. Eksp. Biol. Med. 127 1999 4 8
L.M. Parsons, F. Lin, and J. Orban Peptidoglycan recognition by Pal, an outer membrane lipoprotein Biochemistry 45 2006 2122 2128
S.J. Peacock, D. Limmathurotsakul, Y. Lubell, G.C. Koh, L.J. White, N.P. Day, and R.W. Titball Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes PLoS Negl. Trop. Dis. 6 2012 e1488
C. Peri, P. Gagni, F. Combi, A. Gori, M. Chiari, R. Longhi, M. Cretich, and G. Colombo Rational epitope design for protein targeting ACS Chem. Biol. 8 2013 397 404
A.W. Purcell, J. McCluskey, and J. Rossjohn More than one reason to rethink the use of peptides in vaccine design Nat. Rev. Drug Discov. 6 2007 404 414
S.L. Reckseidler-Zenteno, R. DeVinney, and D.E. Woods The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition Infect. Immun. 73 2005 1106 1115
M. Sarkar-Tyson, and R.W. Titball Progress toward development of vaccines against melioidosis: A review Clin. Ther. 32 2010 1437 1445
G. Scarabelli, G. Morra, and G. Colombo Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping Biophys. J. 98 2010 1966 1975
M. Soriani, P. Petit, R. Grifantini, R. Petracca, G. Gancitano, E. Frigimelica, F. Nardelli, C. Garcia, S. Spinelli, and G. Scarabelli Exploiting antigenic diversity for vaccine design: the chlamydia ArtJ paradigm J. Biol. Chem. 285 2010 30126 30138
Y.C. Su, K.L. Wan, R. Mohamed, and S. Nathan Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice Vaccine 28 2010 5005 5011
D. Suwannasaen, J. Mahawantung, W. Chaowagul, D. Limmathurotsakul, P.L. Felgner, H. Davies, G.J. Bancroft, R.W. Titball, and G. Lertmemongkolchai Human immune responses to Burkholderia pseudomallei characterized by protein microarray analysis J. Infect. Dis. 203 2011 1002 1011
W.F. van Gunsteren, D. Bakowies, R. Baron, I. Chandrasekhar, M. Christen, X. Daura, P. Gee, D.P. Geerke, A. Glättli, and P.H. Hünenberger Biomolecular modeling: goals, problems, perspectives Angew. Chem. Int. Ed. Engl. 45 2006 4064 4092
M.E. Wand, C.M. Müller, R.W. Titball, and S.L. Michell Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis BMC Microbiol. 11 2011 11
J.N. Weiser, and E.C. Gotschlich Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1 Infect. Immun. 59 1991 2252 2258
E. Westhof, D. Altschuh, D. Moras, A.C. Bloomer, A. Mondragon, A. Klug, and M.H. Van Regenmortel Correlation between segmental mobility and the location of antigenic determinants in proteins Nature 311 1984 123 126
W.J. Wiersinga, T. van der Poll, N.J. White, N.P. Day, and S.J. Peacock Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei Nat. Rev. Microbiol. 4 2006 272 282
M.E. Woodman, R.G. Worth, and R.M. Wooten Capsule influences the deposition of critical complement C3 levels required for the killing of Burkholderia pseudomallei via NADPH-oxidase induction by human neutrophils PLoS ONE 7 2012 e52276
S. Zhang, S.H. Feng, B. Li, H.Y. Kim, J. Rodriguez, S. Tsai, and S.C. Lo In vitro and in vivo studies of monoclonal antibodies with prominent bactericidal activity against Burkholderia pseudomallei and Burkholderia mallei Clin. Vaccine Immunol. 18 2011 825 834
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.