B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I: Expansions in integer bases, Ann. Math. 165 (2007), 547-565.
B. Adamczewski and Y. Bugeaud, Nombres réels de complexité sous-linéaire: mesures d'irrationalité et de transcendance, J. Reine Angew. Math. 658 (2011), 65-98.
A. Aberkane, Words whose complexity satisfies lim p(n) n = 1, Theoret. Comput. Sci. 307 (2003), 31-46.
J.-P. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 133-143.
P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France 119 (1991), 199-215.
J. P. Allouche and L. Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms, J. Number Theory 69 (1998), 119-124.
J. Berstel, Mots sans carré et morphismes itérés, Discrete Math. 29 (1980), 235-244.
M. Boyle and D. Handelman, Entropy versus orbit equivalence for minimal homeomorphisms, Pacific J. Math. 164 (1994), 1-13.
V. Berthé, C. Holton, L. Q. Zamboni, Initial powers of Sturmian words, Acta Arith. 122 (2006), 315-347.
S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak, Finite rank Bratteli diagrams: structure of invariant measures, Preprint. Available at http://arxiv.org/abs/1003.2816.
M. Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, J. Analyse Math., 44 (1984/85), 77-96.
M. Boshernitzan, A condition for unique ergodicity of minimal symbolic flows, Ergodic Theory Dynam. Systems, 12 (1992), 425-428.
L. Balková, E. Pelantová, and W. Steiner, Sequences with constant number of return words, Monatsh. Math. 155 (2008), 251-263.
V. Berthé and M. Rigo, eds., Combinatorics, Automata and Number Theory, Vol. 135 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2010.
J. Cassaigne, Special factors of sequences with linear subword complexity, In Developments in Language Theory, II, World Sci. Publ., 1996, pp. 25-34.
J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 67-88.
J. Cassaigne, Constructing infinite words of intermediate complexity, in Develop-ments in Language Theory, Lect. Notes in Comput. Sci., Vol. 2450, Springer, 2003, pp. 173-184.
J. Cassaigne and F. Nicolas, Quelques propriétés des mots substitutifs, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 661-676.
A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, in Proc. of 9th Annual Symposium on Switching and Automata Theory, IEEE Computer Society, 1968, pp. 51-60.
V. Canterini and A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144.
R. Deviatov, On subword complexity of morphic sequences, in Computer Science-Theory and Applications, Lect. Notes in Comput. Sci., Vol. 5010, Springer, 2008, pp. 146-157.
D. Damanik and D. Lenz, Substitution dynamical systems: characterization of linear repetitivity and applications, J. Math. Anal. Appl. 321 (2006), 766-780.
F. Durand, Decidability of uniform recurrence of morphic sequences, Internat. J. Found. Comput. Sci., to appear.
F. Durand, A characterization of substitutive sequences using return words, Dis-crete Math. 179 (1998), 89-101.
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems 20 (2000), 1061-1078.
F. Durand, Corrigendum and addendum to: "Linearly recurrent subshifts have a finite number of non-periodic subshift factors", Ergodic Theory Dynam. Systems 23 (2003), 663-669.
A. Ehrenfeucht, K. P. Lee, and G. Rozenberg, Subword complexities of various classes of deterministic developmental languages without interactions, Theoret. Comput. Sci. 1 (1975), 59-75.
A. Ehrenfeucht and G. Rozenberg, On the subword complexity of m-free D0L languages, Inform. Process. Lett. 17 (1983), 121-124.
S. Ferenczi, Les transformations de Chacon: combinatoire, structure géométrique, lien avec les systèmes de complexité 2n + 1, Bull. Soc. Math. France 123 (1995), 271-292.
S. Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems 16 (1996), 663-682.
S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1999), 145-154.
S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161.
N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lec-ture Notes in Mathematics, Vol. 1794, Springer-Verlag, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit, and A. Siegel.
N. Pytheas Fogg, Terminologie S-adique et propriétés, Preprint available at http://tinyurl.com/8opdb8s, 2011.
R. Gjerde and Ø. Johansen, Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows, Ergodic Theory Dynam. Systems, 20 (2000), 1687-1710.
A. Glen and J. Justin, Episturmian words: a survey, Theor. Inform. Appl. 43 (2009), 403-442.
C. Grillenberger, Constructions of strictly ergodic systems. I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 323-334.
C. Holton and L.Q. Zamboni, Geometric realizations of substitutions, Bull. Soc. Math. France 126 (1998), 149-179.
J. Justin and L. Vuillon, Return words in Sturmian and episturmian words, RAIRO Theor. Inform. Appl. 34 (2000), 343-356.
M. Koskas, Complexités de suites de Toeplitz, Discrete Math., 183 (1998), 161-183.
J. Leroy, Contribution to the resolution of the S-adic conjecture, PhD thesis, Université de Picardie Jules Verne, 2012.
J. Leroy, Some improvements of the S-adic conjecture, Adv. in Appl. Math. 48 (2012), 79-98.
J. Leroy and G. Richomme, A combinatorial proof of S-adicity for sequences with sub-affine complexity, Integers, to appear.
F. Levé, G. Richomme, Quasiperiodic Sturmian words and morphisms, Theoret. Comput. Sci. 372 (2007), 15-25.
M. Lothaire, Combinatorics on Words, Cambridge Mathematical Library, Cambridge University Press, 1997. (Corrected reprint of the 1983 original.)
M. Lothaire, Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Math-ematics and its Applications, Cambridge University Press, 2002.
M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866.
M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42.
C. Mauduit and C. G. Moreira, Complexity of infinite sequences with zero entropy, Acta Arith. 142 (2010), 331-346.
F. Nicolas and Y. Pritykin, On uniformly recurrent morphic sequences, Internat. J. Found. Comput. Sci. 20 (2009), 919-940.
J.-J. Pansiot, Hiérarchie et fermeture de certaines classes de tag-systèmes, Acta Inform. 20 (1983), 179-196.
J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés, in Automata, Languages and Programming, Lect. Notes in Comput. Sci., Vol. 172, Springer, 1984, pp. 380-389.