Abstract :
[en] Solvent degradation is one of the main operational drawbacks of post-combustion CO2 capture with amine solvents. Although the different degradation mechanisms have been largely studied in recent years, it is still impossible to predict the solvent losses and the emissions of degradation products that may occur in a CO2 capture plant depending on its size and on its operating conditions. In the present work, we experimentally study the degradation of MEA monoethanolamine) under accelerated conditions implying high temperature, continuous gas feed and vigorous agitation. A special focus is set on the oxidative degradation of MEA, which is studied in the absence of CO2. Based on the experimental results, we propose a kinetic model to describe both MEA oxidative and thermal degradation pathways. The degradation kinetics is then included into a global model of the CO2 capture process, enabling solvent losses and emissions of degradation products to be predicted as a function of the process operating conditions. The predicted MEA loss is in the same order of magnitude as reported in degradation measurements from pilot plants, although lower by a factor 3. This kind of model assessing solvent degradation could and should be used for the design of large-scale CO2 capture plants in order to simultaneously consider the energy consumption of the process and its environmental impact related to the emissions of degradation products and amine solvent. Further developments shall consider the effect of SOx, NOx and dissolved metals on MEA degradation.
Scopus citations®
without self-citations
2