magnetic measurements; manganites; thermal conductivity
Abstract :
[en] Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7Ca0.3Mn1-xCrxO3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7Ca0.3Mn1-xCrO3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above T-f (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature 0 is dependent on Cr doping. Below T-f there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7Ca0.3MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above T-f. Furthermore, these interactions are a precursor of the cooperative freezing at T-f. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x= 0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7Ca0.3Mn1-xCrO3. (c) 2005 American Institute of Physics.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Disciplines :
Physics
Author, co-author :
Wu, Bai-Mei; University of Science and Technology of China, Hefei, China
Li, Bo; University of Science and Technology of China, Hefei, China
Zhen, Wei-Hua; University of Science and Technology of China, Hefei, China
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux
Du, Ying-Lei; University of Science and Technology of China, Hefei, China
National Nature Science Foundation of China F.R.S.-FNRS - Fonds de la Recherche Scientifique
Commentary :
Copyright (2005) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
The following article appeared in J. Appl. Phys. 97, 103908 (2005) and may be found at http://link.aip.org/link/?JAPIAU/97/103908/1.
S. Jin, T. H. Tiefel, M. Meconnack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science 264, 413 (1994).
R. V. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).
K. Chahara, T. Ohno, M. Kasai, and Y. Kosono, Appl. Phys. Lett. 63, 1990 (1993).
A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
For more detailed discussions and extensive references, see Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides, edited by, C. N. R. Rao, and, B. Raveau, (World Scientific, Singapore, 1988); J. M. D. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999); J. M. D. Coey, M. Viret, and S. Von Molnar, Localized to Itinerant Electronic Transitions in Perovskite Oxides, edited by, J. B. Goodenough, (Springer, Berlin, 2001); E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds, Springer Series in Solid State Sciences Vol. 136 (Springer, Berlin, 2003).
For more detailed discussions and extensive references, see Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides, edited by, C. N. R. Rao, and, B. Raveau, (World Scientific, Singapore, 1988); J. M. D. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999); J. M. D. Coey, M. Viret, and S. Von Molnar, Localized to Itinerant Electronic Transitions in Perovskite Oxides, edited by, J. B. Goodenough, (Springer, Berlin, 2001); E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds, Springer Series in Solid State Sciences Vol. 136 (Springer, Berlin, 2003).
For more detailed discussions and extensive references, see Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides, edited by, C. N. R. Rao, and, B. Raveau, (World Scientific, Singapore, 1988); J. M. D. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999); J. M. D. Coey, M. Viret, and S. Von Molnar, Localized to Itinerant Electronic Transitions in Perovskite Oxides, edited by, J. B. Goodenough, (Springer, Berlin, 2001); E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds, Springer Series in Solid State Sciences Vol. 136 (Springer, Berlin, 2003).
For more detailed discussions and extensive references, see Colossal Magnetoresistance, Charge Ordering, and Related Properties of Manganese Oxides, edited by, C. N. R. Rao, and, B. Raveau, (World Scientific, Singapore, 1988); J. M. D. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999); J. M. D. Coey, M. Viret, and S. Von Molnar, Localized to Itinerant Electronic Transitions in Perovskite Oxides, edited by, J. B. Goodenough, (Springer, Berlin, 2001); E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds, Springer Series in Solid State Sciences Vol. 136 (Springer, Berlin, 2003).
C. Zener, Phys. Rev. 82, 403 (1951).
J. S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 80, 2665 (1998).
A. J. Millis, Nature (London) 392, 147 (1998).
H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).
H. Roder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
W. H. Zheng, B. M. Wu, D. S. Yang, J. Y. Li, X. R. Liu, and B. Li, Chin. J. Low Temp. Phys. 23, 216 (2001).
P. Wagner, I. Gordon, S. Mangin, V. V. Moshchalkov, Y. Bruynseraede, L. Pinsard, and A. Revcolevschi, Phys. Rev. B 61, 529 (2000).
F. Rivadulla, M. A. López-Quintela, L. E. Hueso, P. Sande, J. Rivas, and R. D. Sanchez, Phys. Rev. B 62, 5678 (2000).
K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, R. Bathe, and S. I. Patil, Phys. Rev. B 59, 533 (1999).
I. O. Troyanchuk, M. V. Bushynski, N. V. Pushkarev, H. Szymczak, and K. Barner, J. Magn. Magn. Mater. 235, 331 (2001).
H. Song, W. Kim, S.-J. Kwon, and J. Kang, J. Appl. Phys. 89, 3398 (2001).
N. Gayathri, A. K. Raychaudhuri, S. K. Tiwary, R. Gundakaram, A. Arulraj, and C. N. R. Rao, Phys. Rev. B 56, 1345 (1997).
D. C. Kundaliya, R. Vij, R. G. Kulkarni, A. A. Tulapurkar, R. Pinto, S. K. Malik, and W. B. Yelon, J. Magn. Magn. Mater. 264, 62 (2003).
Y. Moritomo, A. Machida, S. Mori, N. Yamanoto, and A. Nakamura, Phys. Rev. B 60, 9220 (1999).
K. Suzuki, H. Fujishiro, Y. Kashiwada, Y. Fujine, and M. Ikebe, Physica B 329-333, 922 (2003).
Y. Sun, X. Xu, and Y. Zhang, Phys. Rev. B 63, 054404 (2001).
R. Ganguly, I. K. Gopalakrishnan, and J. V. Yakhmi, Physica B 275, 308 (2000).
O. Cabeza, O. Barca, G. Francesconi, M. A. Bari, C. Severack, C. M. Muirhead, and F. Miguelez, J. Magn. Magn. Mater. 196-197, 504 (1999).
O. Cabeza, M. Long, C. Severac, M. A. Bari, C. M. Muirhead, M. G. Francesconi, and C. Greaves, J. Phys.: Condens. Matter 11, 2569 (1999).
Z. H. Wang, et al., J. Appl. Phys. 85, 5399 (1999).
J. W. Cai, C. Wang, B. G. Shen, J. G. Zhao, and W. S. Zhan, Appl. Phys. Lett. 71, 1727 (1997).
G. H. Rao, J. R. Sun, Y. L. Zhang, and J. K. Liang, J. Phys.: Condens. Matter 8, 5393 (1996).
G. Li, X. Ze, C. O. Kim, H. J. Kim, and Y. W. Lee, J. Magn. Magn. Mater. 239, 51 (2002).
W. H. Zheng, B. M. Wu, B. Li, D. S. Yang, and L. Z. Cao, Chin. J. Low Temp. Phys. 24, 230 (2002).
B. M. Wu, D. S. Yang, B. Li, W. H. Zheng, and S. Sheng, Chin. J. Low Temp. Phys. 25, 248 (2003).
J. A. Mydosh, Spin Glass: An Experimental Introduction (Taylor & Francis, London, 1993).
A. F. J. Morgownik and J. A. Mydosh, Phys. Rev. B 24, 5277 (1981).
J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
D. W. Visser and A. P. Ramirez, Phys. Rev. Lett. 78, 3947 (1997).
M. Ikebe and H. Fujishiro, J. Phys. Soc. Jpn. 67, 1083 (1998).
H. Fujishiro and M. Ikebe, Physica B 263-264, 691 (1999).
C. Hess and B. Büchner, Phys. Rev. B 59, R10397 (1999).
Y. Kashiwada, H. Fujishiro, and M. Ikebe, Physica B 329-333, 924 (2003).
E. Gamari-Seale, E-MRS Fall Meeting 2003, Symposium D, Invited Oral.
B.-M. Wu, M. Ausloos, Y.-L. Du, W.-H. Zheng, B. Li, J. F. Fagnard, and Ph. Vanderbemden, Chin. Phys. Lett. 22, 686 (2005).
S. Sergeenkov, H. Bougrine, M. Ausloos, and A. Gilabert, Phys. Rev. B 60, 12322 (1999).
M. Ausloos, L. Hubert, S. Dorbolo, A. Gilabert, and R. Cloots, Phys. Rev. B 66, 174436 (2002).