[en] This work presents development of statistical shape models based on robust and rigid-groupwise registration followed by pointset non-rigid registration. The main advantages of the pipeline include automation in that the method does not rely on manual landmarks or a regionalization step; there is no bias in the choice of reference during the correspondence steps and the use of the Probabilistic Principal Component Analysis framework increases the domain of the shape variability. A comparison between the widely used Expectation Maximization- Iterative Closest Point algorithm and a recently reported groupwise method on publicly available data (hippocampus) using the well-known criteria of generality, specificity and compactness is also presented. The proposed method gives similar values but the curves of generality and specificity are superior to those of the other two methods. Finally the method is applied to the human scapula, which is a known difficult structure, and the human humerus.
Disciplines :
Human health sciences: Multidisciplinary, general & others
Author, co-author :
Mutsvangwa, Tinashe; University of Cape Town > Biomedical Engineering Division
Burdin, Valérie; Telecom Bretagne > LaTIM
Schwartz, Cédric ; Université de Liège - ULiège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
Roux, Christian; Ecole des mines de Saint-Etienne > Centre Ingénierie et Santé
Language :
English
Title :
An automated statistical shape model developmental pipeline: application to the human scapula and humerus
E. Stindel, J. L. Briard, S. Lavallée, F. Dubrana, S. Plaweski, P. Merloz, C. Lef évre, and J. Troccaz, " Bone morphing: 3D reconstruction without pre- or intraoperative imaging - Concept and applications," in Navigation and Robotics in Total Joint and Spine Surgery. Berlin, Germany: Springer, 2004, pp. 39-45.
K. T. Rajamani, M. A. Styner, H. Talib, G. Zheng, L. P. Nolte, and M. A. G. Ballester, "Statistical deformable bone models for robust 3D surface extrapolation from sparse data," Med. Image Anal., vol. 11, no. 2, pp. 99-109, 2007.
G. Zheng, X. Dong, K. T. Rajamani, X. Zhang, M. Styner, R. U. Thoranaghatte, L.-P. Nolte, and M. G. Ballester, "Accurate and robust reconstruction of a surface model of the proximal femur from sparse-point data and a dense-point distribution model for surgical navigation," IEEE Trans. Biomed. Eng., vol. 54, no. 12, pp. 2109-2122, Dec. 2007.
G. Gomes, S. Van Cauter, M. De Beule, L. Vigneron, C. Pattyn, and E. Audenaert, "Patient-specific modelling in orthopedics: From image to surgery," in Biomedical Imaging and Computational Modeling in Biomechanics. New York, NY, USA: Springer, 2013, pp. 109-129.
G. Zheng, S. Gollmer, S. Schumann, X. Dong, T. Feilkas, and M. A. González Ballester, "A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated x-ray images," Med. Image Anal., vol. 13, no. 6, pp. 883-899, 2009.
H. Lamecker, T. H. Wenckebach, and H.-C. Hege, "Atlas-based 3D-shape reconstruction from x-ray images," in Proc. IEEE 18th Int. Conf. Pattern Recog., 2006, vol. 1, pp. 371-374.
Z. Zhu and G. Li, "Construction of 3D human distal femoral surface models using a 3D statistical deformable model," J. Biomechanics, vol. 44, no. 13, pp. 2362-2368, 2011.
S. Thompson, G. Penney, D. Buie, P. Dasgupta, and D. Hawkes, "Use of a CT statistical deformation model for multi-modal pelvic bone segmentation," Proc. SPIE, vol. 6914, pp. 69 141O-1-69 141O-10, 2008.
D. C. Barratt, C. S. Chan, P. J. Edwards, G. P. Penney, M. Slomczykowski, T. J. Carter, and D. J. Hawkes, "Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging," Med. Image Anal., vol. 12, no. 3, pp. 358-374, 2008.
H. Seim, D. Kainmueller, M. Heller, H. Lamecker, S. Zachow, and H.-C. Hege, "Automatic segmentation of the pelvic bones from CT data based on a statistical shapemodel," in Proc.Conf. Visual Comput. Biomed., 2008, pp. 93-100.
M. Becker, M. Kirschner, S. Fuhrmann, and S. Wesarg, "Automatic construction of statistical shape models for vertebrae," in Medical Image Computing and Computer-Assisted Intervention. New York, NY, USA: Springer, 2011, pp. 500-507.
M. Elias de Oliveira, C. Reutlinger, G. Zheng, C. Hasler, and P. Buchler, "Statistical shape modeling of pathological scoliotic vertebrae: A comparative analysis," in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2010, pp. 5939-5942.
H. Mirzaalian, M. Wels, T. Heimann, B. M. Kelm, and M. Suehling, "Fast and robust 3D vertebra segmentation using statistical shape models," in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2013, pp. 3379-3382.
P. Boileau, R. Sinnerton, C. Chuinard, and G. Walch, "Arthroplasty of the shoulder," J. Bone Joint Surg., vol. 88, no. 5, pp. 562-575, 2006.
C. Schwartz, F. Leboeuf, O. Rémy-Néris, S. Brochard, M. Lempereur, and V. Burdin, "Using merged kinematic and anatomical data to evaluate humeral motion estimation: A pilot study," Comput. Methods Biomechanics Biomed. Eng.: Imag. Visualization, vol. 1, no. 1, pp. 43-47, 2013.
F. Lebailly, L. Lima, A. Clairemidi, B. Aubert, S. Guerard, Y. Chaibi, J. De Guise, C. Fontaine, and W. Skalli, "Semi-automated stereoradiographic upper limb 3D reconstructions using a combined parametric and statistical model: A preliminary study," Surgical Radiologic Anatomy, vol. 34, no. 8, pp. 757-765, 2012.
C. Schwartz, F. Leboeuf, O. Rémy-Néris, S. Brochard, M. Lempereur, and V. Burdin, "Detection of incoherent joint state due to inaccurate bone motion estimation," Comput. Methods Biomechanics Biomed. Eng., vol. 16, no. 2, pp. 165-174, 2013.
M. A. Styner, K. T. Rajamani, L.-P. Nolte, G. Zsemlye, G. Székely, C. J. Taylor, and R. H. Davies, "Evaluation of 3D correspondencemethods for model building," in Information Processing in Medical Imaging. New York, NY, USA: Springer, 2003, pp. 63-75.
O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, "A survey on shape correspondence," Comput. Graphics Forum, vol. 30, no. 6, pp. 1681-1707, 2011.
T. Heimann and H.-P. Meinzer, "Statistical shape models for 3D medical image segmentation: A review," Med. Image Anal., vol. 13, no. 4, pp. 543-563, 2009.
T. F. Cootes, S. Marsland, C. J. Twining, K. Smith, and C. J. Taylor, "Groupwise diffeomorphic non-rigid registration for automatic model building," in Computer Vision-ECCV. New York, NY, USA: Springer, 2004, pp. 316-327.
S. Granger, and X. Pennec, "Multi-scale em-icp: A fast and robust approach for surface registration," in Computer Vision - ECCV (Lecture Notes in Computer Science), A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, Eds. Berlin, Germany, Springer, Jan. 1, 2002, vol. 2353, ch. 28, pp. 418-432.
S. K. Balci, P. Golland, M. Shenton, and W. M. Wells, "Free-form b-spline deformationmodel for groupwise registration," in Proc.Med. Image Comput. Comput.-Assisted Intervention, vol. 10, 2007, pp. 23-30.
A. Rasoulian, R. Rohling, and P. Abolmaesumi, "Group-wise registration of point sets for statistical shape models," IEEE Trans. Med. Imag., vol. 31, no. 11, pp. 2025-2034, Nov. 2012.
H. Hufnagel, X. Pennec, J. Ehrhardt, N. Ayache, and H. Handels, "Computation of a probabilistic statistical shape model in a maximum-a-posteriori framework," Methods Inf. Med., vol. 48, no. 4, pp. 314-319, 2009.
Z. Su, "Statistical shape modelling: automatic shape model building," Ph. D. thesis, University College London, London, U.K., 2011.
M. Luthi, R. Blanc, T. Albrecht, T. Gass, O. Goksel, P. Buchler, M. Kistler, H. Bousleiman, M. Reyes, and P. C. Cattin, "Statismo - A framework for PCA based statistical models," Insight J., vol. 1, pp. 1-18, 2012.
Y. M. Yang, D. Rueckert, and A. M. Bull, "Predicting the shapes of bones at a joint: Application to the shoulder," Comput. Methods Biomechanics Biomed. Eng., vol. 11, no. 1, pp. 19-30, 2008.
M. Mayya, S. Poltaretskyi, C. Hamitouche, and J. Chaoui, "Scapula statistical shape model construction based on watershed segmentation and elastic registration," in Proc. IEEE Int. Symp. Biomed. Imag., 2013, pp. 101-104.
W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, Third Edition, Kitware Inc., Clifton Park, NY, USA.
L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide: The Insight Segmentation and Registration Toolkit, Kitware Inc., Clifton Park, NY, USA, vol. 5, 2003.
T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, "Engineering and algorithm design for an image processing API: A technical report on ITK-The insight toolkit," Studies Health Technol. Informat., pp. 586-592, 2002.
H. Hufnagel, X. Pennec, J. Ehrhardt, N. Ayache, and H. Handels, "Generation of a statistical shape model with probabilistic point correspondences and the expectation maximization-iterative closest point algorithm," Int. J. Comput.-Assisted Radiol. Surg., vol. 2, no. 5, pp. 265-273, 2008.
M. Styner, I. Oguz, S. Xu, C. Brechbühler, D. Pantazis, J. J. Levitt, M. E. Shenton, and G. Gerig, "Framework for the statistical shape analysis of brain structures using SPHARM-PDM," Insight J., no. 1071, pp. 242-250, 2006.
J.-J. Jacq, T. Cresson, V. Burdin, and C. Roux, "Performing accurate joint kinematics from 3D in vivo image sequences through consensus-driven simultaneous registration," IEEE Trans. Biomed. Eng., vol. 55, no. 5, pp. 1620-1633, May 2008.
J.-J. Jacq, C. Schwartz, V. Burdin, R. Gerard, C. Lefevre, C. Roux, and O. Remy-Neris, "Building and tracking root shapes," IEEE Trans. Biomed. Eng., vol. 57, no. 3, pp. 696-707, Mar. 2010.
C. Schwartz, "Contribution to the development of a common representation space for morphofunctional analysis of the upper limb: Application to the glenohumeral joint," (in french), Ph.D. thesis, Télécom Bretagne, Brest, France, 2009.
P. J. Rousseeuw, and A. M. Leroy, Robust Regression and Outlier Detection. New York, NY, USA: Wiley, 1987.
K. Fujiwara, "Eigenvalues of Laplacians on a closed riemannian manifold and its nets," Proc. Amer. Math. Soc., vol. 123, no. 8, pp. 2585-2594, Aug. 1995.
A. Myronenko, X. Song, and D. J. Sahn, "Maximum likelihood motion estimation in 3D echocardiography through non-rigid registration in spherical coordinates," in Functional Imaging and Modeling of the Heart. New York, NY, USA: Springer, 2009, pp. 427-436.
A. Myronenko and X. Song, "Point set registration: Coherent point drift," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp. 2262-2275, Dec. 2010.
M. Koch, S. Bauer, J. Hornegger, and N. Strobel, "Towards deformable shape modeling of the left atrium using non-rigid coherent point drift registration," in Bildverarbeitung für die Medizin. New York, NY, USA: Springer, 2013, pp. 332-337.
A. Myronenko, "Non-rigid image registration: Regularization, algorithms and applications: A dissertation," Ph.D. thesis, Oregon Health and Science University, Portland, OR, USA, 2010.
B. Combés, B., and S. Prima, "An efficient em-icp algorithm for symmetric consistent non-linear registration of point sets," in Medical Image Computing and Computer-Assisted Intervention. New York, NY, USA: Springer, 2010, pp. 594-601.
J. C. Gower, "Generalized procrustes analysis," Psychometrika, vol. 40, no. 1, pp. 33-51, 1975.
R. H. Davies, C. J. Twining, T. F. Cootes, and C. J. Taylor, "Building 3D statistical shape models by direct optimization," IEEE Trans. Med. Imag., vol. 29, no. 4, pp. 961-981, Apr. 2010.
N. Aspert, D. Santa Cruz, and T. Ebrahimi, "Mesh: Measuring errors between surfaces using the Hausdorff distance," in Proc. IEEE Int. Conf. Multimedia Expo., 2002, vol. 1, pp. 705-708.
G. Wu, F. C. van der Helm, H. D. Veeger, M. Makhsous, P. V. Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, X. Wang, F. W. Werner, and B. Buchholz, "Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: Shoulder, elbow, wrist, and hand," J. Biomechanics, vol. 38, no. 5, pp. 981-992, 2005.
G. P. Nicholson, D. A. Goodman, E. L. Flatow, and L. U. Bigliani, "The acromion: Morphologic condition and age-related changes. A study of 420 scapulas," J. Shoulder Elbow Surg., vol. 5, no. 1, pp. 1-11, 1996.