magnetocaloric effect; manganites; magnetic measurements
Abstract :
[en] The magnetocaloric effect in magnetic materials is of great interest nowadays. In this article we present an investigation about the magnetic properties near the magnetic transition in a polycrystalline sample of a manganite Tb0.9Sn0.1MnO3. Particularly, we are interested in describing the nature of the magnetic interactions and the magnetocaloric effect in this compound. The temperature dependence of the magnetization was measured to determine the characteristics of the magnetic transition and the magnetic entropy change was calculated from magnetization curves at different temperatures. The magnetic solid is paramagnetic at high temperatures. We observe a dominant antiferromagnetic interaction below T-n=38 K for low applied magnetic fields; the presence of Sn doping in this compound decreases the Neel temperature of the pure TbMnO3 system. A drastic increase in the magnetization as a function of temperature near the magnetic transition suggests a strong magnetocaloric effect. We found a large magnetic entropy change Delta S-M(T) of about -4 J/kg K at µ0H=3 T. We believe that the magnetic entropy change is associated with the magnetic transition and we interpret it as due to the coupling between the magnetic field and the spin ordering. This relatively large value and broad temperature interval (about 35 K) of the magnetocaloric effect make the present compound a promising candidate for magnetic refrigerators at low temperatures. (c) 2007 American Institute of Physics.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Disciplines :
Physics
Author, co-author :
Fabris, Frederik Wolff; Université de Liège - ULiège > SUPRATECS
FRFC - Fonds de la Recherche Fondamentale Collective F.R.S.-FNRS - Fonds de la Recherche Scientifique CGRI - Commissariat général aux Relations internationales MNiSW - Polish Ministry of Science and Higher Education
Commentary :
Copyright (2007) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
The following article appeared in J. Appl. Phys. 101, 103904 (2007) and may be found at http://link.aip.org/link/?JAPIAU/101/103904/1.
T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 0028-0836 10.1038/nature02018 426, 55 (2003).
T. Kimura, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 0163-1829 10.1103/PhysRevB.71.224425 71, 224425 (2005).
M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. -W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.95.087206 95, 087206 (2005).
T. Arima, T. Goto, Y. Yamasaki, S. Miyasaka, K. Ishii, M. Tsubota, T. Inami, Y. Murakami, and Y. Tokura, Phys. Rev. B 0163-1829 10.1103/PhysRevB.72. 100102 72, 100102 (2005).
M. -H. Phan, S. C. Yu, and N. H. Hur, J. Magn. Magn. Mater. 262, 407 (2003).
H. Gencer, S. Atalay, H. I. Adiguzel, and V. S. Kolat, Physica B (Amsterdam) 357, 326 (2005). 0921-4526
N. Chau, N. D. Tho, N. H. Luong, B. H. Giang, and B. T. Cong, J. Magn. Magn. Mater. 303, e402 (2006).
L. Morales, R. Zysler, and A. Caneiro, Physica B (Amsterdam) 320, 100 (2002). 0921-4526
Y. Cui, L. Zhang, G. Xie, and R. Wang, Solid State Commun. 0038-1098 10.1016/j.ssc.2006.04.033 138, 481 (2006).
H. Y. Hwang, S. -W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.75.914 75, 914 (1995).
J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 0001-8732 10.1080/000187399243455 48, 167 (1999).
E. F. Bertaut and M. Mercier, Phys. Lett. 0031-9163 10.1016/S0375- 9601(63)80014-6 5, 27 (1963).
M. Bieringer and J. E. Greedan, Solid State Chem.. 143, 132 (1999).
A. Munoz, J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, J. L. Martinez, and M. T. Fernadez-Diaz, Phys. Rev. B 0163-1829 10.1103/PhysRevB.62. 9498 62, 9498 (2000).
S. K. Banerjee, Phys. Lett. 0031-9163 10.1016/0031-9163(64)91158-8 12, 16 (1964).
S. Chaudhary, V. Sunil Kumar, S. B. Roy, P. Chaddah, S. R. Krishnakumar, V. G. Sathe, A. Kumar, and D. D. Sarma, J. Magn. Magn. Mater. 0304-8853 10.1016/S0304-8853(99)00333-9 202, 47 (1999).
A. Szewczyk, H. Szymczak, A. Wisniewski, K. Piotrowski, R. Kartaszynski, B. Dabrowski, S. Kolesnik, and Z. Bukowski, Appl. Phys. Lett. 0003-6951 10.1063/1.1288671 77, 1026 (2000).
M. H. Phan and S. -C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).
M. -H. Phan, S. -C. Yu, N. H. Hur, and Y. -H. Yeong, J. Appl. Phys. 0021-8979 10.1063/1.1762710 96, 1154 (2004).
Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.78.1142 78, 1142 (1997).
P. G. Radaelli, D. E. Cox, M. Marezio, S. -W. Cheong, P. E. Schiffer, and A. P. Ramirez, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.75.4488 75, 4488 (1995).