Article (Scientific journals)
Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-latitude (Cfb) Climate
Forbes, Shari L.; Perrault, Katelynn A.; Stefanuto, Pierre-Hugues et al.
2014In PLoS ONE, 9 (e113681), p. 1-11
Peer Reviewed verified by ORBi
 

Files


Full Text
PLoS ONE 2014 Forbes-1.pdf
Publisher postprint (870.99 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
GCxGC; Forensic chemistry; VOC
Abstract :
[en] The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC6GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC6GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs.
Disciplines :
Chemistry
Author, co-author :
Forbes, Shari L.;  University of Technology Sydney > Center for Forensic Science
Perrault, Katelynn A.;  University of Technology Sydney > Center for Forensic Science
Stefanuto, Pierre-Hugues  ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Nizio, Katie D.;  University of Technology Sydney > Center for Forensic Science
Focant, Jean-François  ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Language :
English
Title :
Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-latitude (Cfb) Climate
Publication date :
November 2014
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, San Franscisco, United States - California
Volume :
9
Issue :
e113681
Pages :
1-11
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 24 November 2014

Statistics


Number of views
99 (10 by ULiège)
Number of downloads
166 (2 by ULiège)

Scopus citations®
 
71
Scopus citations®
without self-citations
45
OpenCitations
 
50
OpenAlex citations
 
81

Bibliography


Similar publications



Contact ORBi