[en] Large-scale epistasis studies can give new clues to system-level genetic mechanisms and a better understanding of the underlying biology of human complex disease traits. Though many novel methods have been proposed to carry out such studies, so far only a few of them have demonstrated replicable results. Here, we propose a minimal protocol for genome-wide association interaction (GWAI) analysis to identify gene–gene interactions from large-scale genomic data. The different steps of the developed protocol are discussed and motivated, and encompass interaction screening in a hypothesis-free and hypothesisdriven manner. In particular, we examine a wide range of aspects related to epistasis discovery in the context of complex traits in humans, hereby giving practical recommendations for data quality control, variant selection or
prioritization strategies and analytic tools, replication and meta-analysis, biological validation of statistical findings and other related aspects. The minimal protocol provides
guidelines and attention points for anyone involved in GWAI analysis and aims to enhance the biological relevance of GWAI findings. At the same time, the protocol improves a better assessment of strengths and weaknesses of published GWAI methodologies.
Disciplines :
Génétique & processus génétiques
Auteur, co-auteur :
Gusareva, Elena ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Van Steen, Kristel ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Langue du document :
Anglais
Titre :
Practical aspects of genome-wide association interaction analysis.
Acar EF, Sun L (2013) A generalized Kruskal–Wallis test incorporating group uncertainty with application to genetic association studies. Biometrics 69:427–435. doi:10.1111/biom.12006
Akey JM, Zhang K, Xiong M, Doris P, Jin L (2001) The effect that genotyping errors have on the robustness of common linkage-disequilibrium measures. Am J Hum Genet 68:1447–1456. doi:10.1086/320607
Anastassiou D (2007) Computational analysis of the synergy among multiple interacting genes. Mol Syst Biol 3:83. doi:10.1038/msb4100124
Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT (2010) Data quality control in genetic case–control association studies. Nat Protoc 5:1564–1573. doi:10.1038/nprot.2010.116
Aulchenko YS, de Koning DJ, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577–585. doi:10.1534/genetics.107.075614
Aulchenko YS, Struchalin MV, van Duijn CM (2010) ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinform 11:134. doi:10.1186/1471-2105-11-134
Bellman R, Kalaba R (1959) A mathematical theory of adaptive control processes. Proc Natl Acad Sci USA 45:1288–1290
Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L (2013) Finding the sources of missing heritability in a yeast cross. Nature 494:234–237. doi:10.1038/nature11867
Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLoS Comput Biol 8:e1002822. doi:10.1371/journal.pcbi.1002822
Bush WS, Dudek SM, Ritchie MD (2009) Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac Symp Biocomput 368–379
Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625. doi:10.1038/nrg1407
Cattaert T, Urrea V, Naj AC, De Lobel L, De Wit V, Fu M, Mahachie John JM, Shen H, Calle ML, Ritchie MD, Edwards TL, Van Steen K (2010) FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PLoS One 5:e10304. doi:10.1371/journal.pone.0010304
Cattaert T, Calle ML, Dudek SM, Mahachie John JM, Van Lishout F, Urrea V, Ritchie MD, Van Steen K (2011) Model-based multifactor dimensionality reduction for detecting epistasis in case–control data in the presence of noise. Ann Hum Genet 75:78–89. doi:10.1111/j.1469-1809.2010.00604.x
Chanda P, Zhang A, Brazeau D, Sucheston L, Freudenheim JL, Ambrosone C, Ramanathan M (2007) Information-theoretic metrics for visualizing gene–environment interactions. Am J Hum Genet 81:939–963. doi:10.1086/521878
Chanda P, Sucheston L, Zhang A, Brazeau D, Freudenheim JL, Ambrosone C, Ramanathan M (2008) AMBIENCE: a novel approach and efficient algorithm for identifying informative genetic and environmental associations with complex phenotypes. Genetics 180:1191–1210. doi:10.1534/genetics.108.088542
Chanda P, Sucheston L, Zhang A, Ramanathan M (2009) The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors. Eur J Hum Genet 17:1274–1286. doi:10.1038/ejhg.2009.38
Chekmenev DS, Haid C, Kel AE (2005) P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res 33:W432–W437. doi:10.1093/nar/gki441
Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468
de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF (2008) Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 17:R122–R128. doi:10.1093/hmg/ddn288
Deyneko IV, Kel AE, Kel-Margoulis OV, Deineko EV, Wingender E, Weiss S (2013) MatrixCatch—a novel tool for the recognition of composite regulatory elements in promoters. BMC Bioinform 14:241. doi:10.1186/1471-2105-14-241
Donoho D, Jin J (2009) Feature selection by higher criticism thresholding achieves the optimal phase diagram. Philos Trans A Math Phys Eng Sci 367:4449–4470. doi:10.1098/rsta.2009.0129
Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450. doi:10.1038/nrg2809
Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET, Urban TJ, Zhang K, Gumbs CE, Smith JP, Castagna A, Cozzi-Lepri A, De Luca A, Easterbrook P, Gunthard HF, Mallal S, Mussini C, Dalmau J, Martinez-Picado J, Miro JM, Obel N, Wolinsky SM, Martinson JJ, Detels R, Margolick JB, Jacobson LP, Descombes P, Antonarakis SE, Beckmann JS, O’Brien SJ, Letvin NL, McMichael AJ, Haynes BF, Carrington M, Feng S, Telenti A, Goldstein DB, Immunology NCfHAV (2009) Common genetic variation and the control of HIV-1 in humans. PLoS Genet 5:e1000791. doi:10.1371/journal.pgen.1000791
Fenger M, Linneberg A, Werge T, Jorgensen T (2008) Analysis of heterogeneity and epistasis in physiological mixed populations by combined structural equation modelling and latent class analysis. BMC Genet 9:43. doi:10.1186/1471-2156-9-43
Fisher R (1948) Combining independent tests of significance. Am Stat 2:30
Fleiss JL (1993) The statistical basis of meta-analysis. Stat Methods Med Res 2:121–145
Gauderman WJ (2002) Sample size requirements for association studies of gene–gene interaction. Am J Epidemiol 155:478–484
Greene CS, Penrod NM, Kiralis J, Moore JH (2009) Spatially uniform relieff (SURF) for computationally-efficient filtering of gene–gene interactions. BioData Min 2:5. doi:10.1186/1756-0381-2-5
Gregersen JW, Kranc KR, Ke X, Svendsen P, Madsen LS, Thomsen AR, Cardon LR, Bell JI, Fugger L (2006) Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature 443:574–577. doi:10.1038/nature05133
Gusareva ES, Carrasquillo MM, Bellenguez C, Cuyvers E, Colon S, Graff-Radford NR, Petersen RC, Dickson DW, Mahachie John JM, Bessonov K, Van Broeckhoven C, the GC, Harold D, Williams J, Amouyel P, Sleegers K, Ertekin-Taner N, Lambert JC, Van Steen K et al (2014a) Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2014.05.014
Gusareva ES, Kurey I, Grekov I, Lipoldova M (2014b) Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics. Biol Rev Camb Philos Soc 89:375–405. doi:10.1111/brv.12059
Gyenesei A, Moody J, Semple CA, Haley CS, Wei WH (2012) High-throughput analysis of epistasis in genome-wide association studies with BiForce. Bioinformatics 28:1957–1964. doi:10.1093/bioinformatics/bts304
Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics 19:376–382
Heath SC, Gut IG, Brennan P, McKay JD, Bencko V, Fabianova E, Foretova L, Georges M, Janout V, Kabesch M, Krokan HE, Elvestad MB, Lissowska J, Mates D, Rudnai P, Skorpen F, Schreiber S, Soria JM, Syvanen AC, Meneton P, Hercberg S, Galan P, Szeszenia-Dabrowska N, Zaridze D, Genin E, Cardon LR, Lathrop M (2008) Investigation of the fine structure of European populations with applications to disease association studies. Eur J Hum Genet 16:1413–1429. doi:10.1038/ejhg.2008.210
Hemani G, Theocharidis A, Wei W, Haley C (2011) EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards. Bioinformatics 27:1462–1465. doi:10.1093/bioinformatics/btr172
Horvath S, Xu X, Laird NM (2001) The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 9:301–306. doi:10.1038/sj.ejhg.5200625
Hu T, Andrew AS, Karagas MR, Moore JH (2013) Statistical epistasis networks reduce the computational complexity of searching three-locus genetic models. Pac Symp Biocomput 397–408
Johnson EO, Hancock DB, Levy JL, Gaddis NC, Saccone NL, Bierut LJ, Page GP (2013) Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy. Hum Genet 132:509–522. doi:10.1007/s00439-013-1266-7
Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res 37:D623–D628. doi:10.1093/nar/gkn698
Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R (2011) ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 39:D712–D717. doi:10.1093/nar/gkq1156
Kamburov A, Stelzl U, Lehrach H, Herwig R (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41:D793–D800. doi:10.1093/nar/gks1055
Kam-Thong T, Czamara D, Tsuda K, Borgwardt K, Lewis CM, Erhardt-Lehmann A, Hemmer B, Rieckmann P, Daake M, Weber F, Wolf C, Ziegler A, Putz B, Holsboer F, Scholkopf B, Muller-Myhsok B (2011a) EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. Eur J Hum Genet 19:465–471. doi:10.1038/ejhg.2010.196
Kam-Thong T, Putz B, Karbalai N, Muller-Myhsok B, Borgwardt K (2011b) Epistasis detection on quantitative phenotypes by exhaustive enumeration using GPUs. Bioinformatics 27:i214–i221. doi:10.1093/bioinformatics/btr218
Kam-Thong T, Azencott CA, Cayton L, Putz B, Altmann A, Karbalai N, Samann PG, Scholkopf B, Muller-Myhsok B, Borgwardt KM (2012) GLIDE: GPU-based linear regression for detection of epistasis. Hum Hered 73:220–236. doi:10.1159/000341885
Liekens AM, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J (2011) BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol 12:R57. doi:10.1186/gb-2011-12-6-r57
Mahachie John JM, Cattaert T, Lishout FV, Gusareva ES, Steen KV (2012) Lower-order effects adjustment in quantitative traits model-based multifactor dimensionality reduction. PLoS One 7:e29594. doi:10.1371/journal.pone.0029594
Mahachie John JM, Van Lishout F, Gusareva ES, Van Steen K (2013) A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection. BioData Min 6:9. doi:10.1186/1756-0381-6-9
Mann SA, Otway R, Guo G, Soka M, Karlsdotter L, Trivedi G, Ohanian M, Zodgekar P, Smith RA, Wouters MA, Subbiah R, Walker B, Kuchar D, Sanders P, Griffiths L, Vandenberg JI, Fatkin D (2012) Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk. J Am Coll Cardiol 59:1017–1025. doi:10.1016/j.jacc.2011.11.039
Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913. doi:10.1038/ng2088
Miko I (2008) Epistasis: gene interaction and phenotype effects. Nat Educ 1
Minelli C, Thompson JR, Abrams KR, Lambert PC (2005) Bayesian implementation of a genetic model-free approach to the meta-analysis of genetic association studies. Stat Med 24:3845–3861. doi:10.1002/sim.2393
Minelli CT, Thompson JR, Abrams KR, Thakkinstian A, Attia J (2008) How should we use information about HWE in the meta-analyses of genetic association studies? Int J Epidemiol 37:136–146
Moore JH (2005) A global view of epistasis. Nat Genet 37:13–14. doi:10.1038/ng0105-13
Moore JH, Barney N, Tsai CT, Chiang FT, Gui J, White BC (2007) Symbolic modeling of epistasis. Hum Hered 63:120–133. doi:10.1159/000099184
Motsinger AA, Reif DM, Fanelli TJ, Davis AC, Ritchie MD (2007) Linkage disequilibrium in genetic association studies improves the performance of grammatical evolution neural networks. Proc IEEE Symp Comput Intell Bioinform Comput Biol 2007:1–8
Nelson MR, Kardia SL, Ferrell RE, Sing CF (2001) A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res 11:458–470. doi:10.1101/gr.172901
Nitsch D, Tranchevent LC, Goncalves JP, Vogt JK, Madeira SC, Moreau Y (2011) PINTA: a web server for network-based gene prioritization from expression data. Nucleic Acids Res 39:W334–W338. doi:10.1093/nar/gkr289
Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap A, King KS, Bergmann S, Nelson MR, Stephens M, Bustamante CD (2008) Genes mirror geography within Europe. Nature 456:98–101. doi:10.1038/nature07331
Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769. doi:10.1086/383251
Patterson N, Price AL, Reich D (2006) Population structure and Eigen analysis. PLoS Genet 2:e190. doi:10.1371/journal.pgen.0020190
Peloso GM, Lunetta KL (2011) Choice of population structure informative principal components for adjustment in a case–control study. BMC Genet 12:64. doi:10.1186/1471-2156-12-64
Pentchev K, Ono K, Herwig R, Ideker T, Kamburov A (2010) Evidence mining and novelty assessment of protein–protein interactions with the ConsensusPathDB plugin for Cytoscape. Bioinformatics 26:2796–2797. doi:10.1093/bioinformatics/btq522
Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP (2009) Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol 170:1197–1206. doi:10.1093/aje/kwp262
Pereira TV, Patsopoulos NA, Pereira AC, Krieger JE (2011) Strategies for genetic model specification in the screening of genome-wide meta-analysis signals for further replication. Int J Epidemiol 40:457–469. doi:10.1093/ije/dyq203
Peres-Neto P, Jackson D, Somers K (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49:974–997
Piriyapongsa J, Ngamphiw C, Intarapanich A, Kulawonganunchai S, Assawamakin A, Bootchai C, Shaw PJ, Tongsima S (2012) iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies. BMC Genom 13(Suppl 7):S2. doi:10.1186/1471-2164-13-S7-S2
Prabhu S, Pe’er I (2012) Ultrafast genome-wide scan for SNP–SNP interactions in common complex disease. Genome Res 22:2230–2240. doi:10.1101/gr.137885.112
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795
Reich D, Price AL, Patterson N (2008) Principal component analysis of genetic data. Nat Genet 40:491–492. doi:10.1038/ng0508-491
Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147. doi:10.1086/321276
Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene–gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157. doi:10.1002/gepi.10218
Schwarz DF, Konig IR, Ziegler A (2010) On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics 26:1752–1758. doi:10.1093/bioinformatics/btq257
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303
Sifrim A, Popovic D, Tranchevent LC, Ardeshirdavani A, Sakai R, Konings P, Vermeesch JR, Aerts J, De Moor B, Moreau Y (2013) eXtasy: variant prioritization by genomic data fusion. Nat Methods 10:1083–1084. doi:10.1038/nmeth.2656
Sithisarankul P, Weaver VM, Diener-West M, Strickland PT (1997) Multicollinearity may lead to artificial interaction: an example from a cross sectional study of biomarkers. Southeast Asian J Trop Med Public Health 28:404–409
Slinker BK, Glantz SA (1985) Multiple regression for physiological data analysis: the problem of multicollinearity. Am J Physiol 249:R1–R12
Strehl A, Ghosh J (2003) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617. doi:10.1162/153244303321897735
Struchalin MV, Dehghan A, Witteman JC, van Duijn C, Aulchenko YS (2010) Variance heterogeneity analysis for detection of potentially interacting genetic loci: method and its limitations. BMC Genet 11:92. doi:10.1186/1471-2156-11-92
Subirana I, Gonzalez JR (2013) Genetic association analysis and meta-analysis of imputed SNPs in longitudinal studies. Genet Epidemiol 37:465–477. doi:10.1002/gepi.21719
Sulakhe D, Balasubramanian S, Xie B, Feng B, Taylor A, Wang S, Berrocal E, Dave U, Xu J, Bornigen D, Gilliam TC, Maltsev N (2013) Lynx: a database and knowledge extraction engine for integrative medicine. Nucleic Acids Res. doi:10.1093/nar/gkt1166
Sun X, Lu Q, Mukheerjee S, Crane PK, Elston R, Ritchie MD (2014) Analysis pipeline for the epistasis search—statistical versus biological filtering. Front Genet 5:106. doi:10.3389/fgene.2014.00106
Thomas DC, Haile RW, Duggan D (2005) Recent developments in genomewide association scans: a workshop summary and review. Am J Hum Genet 77:337–345. doi:10.1086/432962
Touitou I, Galeotti C, Rossi-Semerano L, Hentgen V, Piram M, Kone-Paut I, CeReMai Frcfad (2013) The expanding spectrum of rare monogenic autoinflammatory diseases. Orphanet J Rare Dis 8:162. doi:10.1186/1750-1172-8-162
Van Lishout F, Mahachie John JM, Gusareva ES, Urrea V, Cleynen I, Theatre E, Charloteaux B, Calle ML, Wehenkel L, Van Steen K (2013) An efficient algorithm to perform multiple testing in epistasis screening. BMC Bioinform 14:138. doi:10.1186/1471-2105-14-138
Van Steen K (2012) Travelling the world of gene–gene interactions. Brief Bioinform 13:1–19. doi:10.1093/bib/bbr012
Van Steen K, Curran D, Kramer J, Molenberghs G, Van Vreckem A, Bottomley A, Sylvester R (2002) Multicollinearity in prognostic factor analyses using the EORTC QLQ-C30: identification and impact on model selection. Stat Med 21:3865–3884. doi:10.1002/sim.1358
VanderWeele TJ (2009) On the distinction between interaction and effect modification. Epidemiology 20:863–871. doi:10.1097/EDE.0b013e3181ba333c
Vansteelandt S, Bekaert M, Claeskens G (2012) On model selection and model misspecification in causal inference. Stat Methods Med Res 21:7–30. doi:10.1177/0962280210387717
Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NL, Yu W (2010a) BOOST: a fast approach to detecting gene–gene interactions in genome-wide case–control studies. Am J Hum Genet 87:325–340. doi:10.1016/j.ajhg.2010.07.021
Wan X, Yang C, Yang Q, Xue H, Tang NL, Yu W (2010b) Predictive rule inference for epistatic interaction detection in genome-wide association studies. Bioinformatics 26:30–37. doi:10.1093/bioinformatics/btp622
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. doi:10.1093/nar/gkq537
Watkinson J, Anastassiou D (2009) Synergy disequilibrium plots: graphical visualization of pairwise synergies and redundancies of SNPs with respect to a phenotype. Bioinformatics 25:1445–1446. doi:10.1093/bioinformatics/btp159
Wei W, Hemani G, Hicks AA, Vitart V, Cabrera-Cardenas C, Navarro P, Huffman J, Hayward C, Knott SA, Rudan I, Pramstaller PP, Wild SH, Wilson JF, Campbell H, Dunlop MG, Hastie N, Wright AF, Haley CS (2011) Characterisation of genome-wide association epistasis signals for serum uric acid in human population isolates. PLoS One 6:e23836. doi:10.1371/journal.pone.0023836
Westfall PH, Young SS (1993a) Resampling-based multiple testing: examples and methods for p value adjustment. Wiley, New York
Westfall PH, Young SS (1993b) Resampling-based multiple testing. Wiley, New York
Wienbrandt L, Kassens JC, Gonzalez-Domınguez J, Schmidt B, Ellinghaus D, Schimmler M (2014) FPGA-based acceleration of detecting statistical epistasis in GWAS. 14th International Conference on Computational Science, vol 29. Procedia Computer Science, pp 220–230
Wong AK, Park CY, Greene CS, Bongo LA, Guan Y, Troyanskaya OG (2012) IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res 40:W484–W490. doi:10.1093/nar/gks458
Wu J, Devlin B, Ringquist S, Trucco M, Roeder K (2010) Screen and clean: a tool for identifying interactions in genome-wide association studies. Genet Epidemiol 34:275–285. doi:10.1002/gepi.20459
Xu H, George V (2011) A Monte Carlo test of linkage disequilibrium for single nucleotide polymorphisms. BMC Res Notes 4:124. doi:10.1186/1756-0500-4-124
Xu J, Turner A, Little J, Bleecker ER, Meyers DA (2002) Positive results in association studies are associated with departure from Hardy–Weinberg equilibrium: hint for genotyping error? Hum Genet 111:573–574
Yang C, He Z, Wan X, Yang Q, Xue H, Yu W (2009) SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Bioinformatics 25:504–511. doi:10.1093/bioinformatics/btn652
Zhang Y (2011) Bayesian epistasis association mapping via SNP imputation. Biostatistics 12:211–222. doi:10.1093/biostatistics/kxq063
Zhang X, Huang S, Zou F, Wang W (2010a) TEAM: efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics 26:i217–i227. doi:10.1093/bioinformatics/btq186
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010b) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360. doi:10.1038/ng.546
Zhang F, Boerwinkle E, Xiong M (2014) Epistasis analysis for quantitative traits by functional regression model. Genome Res 24:989–998. doi:10.1101/gr.161760.113
Ziegler A, König I (2006) A Statistical Approach to Genetic Epidemiology: Concepts and Applications, with an e-Learning Platform. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198. doi:10.1073/pnas.1119675109