This is the peer reviewed version of the following article: "Relevance of accelerated conditions for the study of monoethanolamine degradation in post-combustion CO2 capture", which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/cjce.22094/abstract
All documents in ORBi are protected by a user license.
[en] Solvent degradation represents one of the main operational drawbacks of the post-combustion
CO2 capture process. Degradation not only induces additional costs for solvent make-up, it
also impacts the process efficiency and its environmental penalty due to the emission of
various degradation products. There is still a gap of knowledge about the influence of process
operating conditions on degradation, making it currently impossible to predict the solvent
degradation rate in CO2 capture plants. Morever, the reaction mechanisms corresponding to
solvent degradation are very slow, significantly complicating its study in industrial units. In
the present work, appropriate experimental equipment and analytical methods are developed
for accelerating the degradation of monoethanolamine solvents (MEA). The relevance of
accelerated conditions is established by comparing artificially degraded solvent samples with
degraded solvent samples from industrial CO2 capture pilot plants. Two approaches are
evaluated implying either discontinuous or continuous gas feed, this latest being the most
representative of industrial degradation. The respective influences of the gas feed composition
and the gas-liquid transfer are evidenced and quantified. Finally, the present study leads to a
better understanding of solvent degradation in the CO2 capture process with MEA. More
generally, it also evidences that accelerated conditions at laboratory-scale may provide
relevant information for the study of slow phenomena taking place in large-scale industrial
processes. Further works include the development of a kinetic model for MEA solvent
degradation and the extension of this methodology to other promising solvents in order to
facilitate the operation and large-scale deployment of CO2 capture.
Disciplines :
Chemical engineering
Author, co-author :
Léonard, Grégoire ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Procédés et développement durable
Toye, Dominique ; Université de Liège - ULiège > Département de chimie appliquée > Génie de la réaction et des réacteurs chimiques
Heyen, Georges ; Université de Liège - ULiège > Département de chimie appliquée > Département de chimie appliquée
Language :
English
Title :
Relevance of accelerated conditions for the study of monoethanolamine degradation in post-combustion CO2 capture.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
IEA, World Energy Outlook Factsheet, International Energy Agency, OECD/IEA, Paris 2013.
IEA, Technology Roadmap, Carbon Capture and Storage, International Energy Agency, OECD/IEA, Paris 2013.
H. Svendsen, E. Essen, T. Mejdell, Chem. Eng. J. 2011, 171, 718.
M. Abu Zahra, L. Schneiders, J. Niederer, P. Feron, G. Versteeg, Int. J. Greenhouse Gas Control 2007, 1, 135.
J. Mertens, H. Lepaumier, D. Desagher, M.-L. Thielens, Int. J. Greenhouse Gas Control 2013, 13, 72.
S. Bedell, Int. J. Greenhouse Gas Control 2011, 5, 1.
B. Epp, H. Fahlenkamp, M. Vogt, Energy Proced. 2011, 4, 75.
A. Sexton, G. Rochelle, Int. J. Greenhouse Gas Control 2009, 3, 704.
T. Supap, R. Idem, P. Tontiwachwuthikul, C. Saiwan, Int. J. Greenhouse Gas Control 2009, 3, 133.
G. Goff, Oxidative degradation of aqueous monoethanolamine in CO2 capture processes: iron and copper catalysis, inhibition, and O2 mass transfer, PhD thesis, University of Texas at Austin, Austin 2005.
B. Delfort, P.-L. Carrette, L. Bonnard, Energy Proced. 2011, 4, 9.
H. Lepaumier, Etude des mécanismes de dégradation des amines utilisées pour le captage du CO2 dans les fumées, PhD thesis, University of Savoie, France 2008.
T. Supap, R. Idem, P. Tontiwachwuthikul, C. Saiwan, Ind. Eng. Chem. Res. 2006, 45, 2437.
S. Chi, G. Rochelle, Ind. Eng. Chem. Res. 2002, 41, 4178.
H. Lepaumier, E. da Silva, A. Einbu, A. Grimstvedt, J. Knudsen, K. Zahlsen, H. Svendsen, Energy Proced. 2011, 4, 1652.
J. Davis, Thermal degradation of aqueous amines used for carbon dioxide capture, PhD thesis, University of Texas at Austin, Austin 2009.
A. Voice, D. Wei, G. Rochelle, "Sequential degradation of aqueous monoethanolamine for CO2 capture, " Recent advances in post-combustion CO2 capture chemistry, ACS Symposium Series, 2012, 1097, 249.
C. Blachly, H. Ravner, The stabilization of monoethanolamine solutions for submarine carbon dioxide scrubbers, Report 6189, U.S. Naval Research Laboratory, 1965.
G. Léonard, D. Toye, G. Heyen, Int. J. Greenhouse Gas Control 2014, 30, 171.
G. Léonard, G. Heyen, Computer Aided Chemical Engineering 2011, 29, 1768.
G. Léonard, B. Mogador Cabeza, S. Belletante, G. Heyen, Computer Aided Chemical Engineering 2013, 32, 451.
G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q. Xu, A. Voice, Chem. Eng. J. 2011, 171, 725.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.