Lake Baikal; Late Quaternary; sediment; vivianite; geochemistry
Abstract :
[en] In an effort to better understand vivianite formation processes, four Lake Baikal sediment cores spanning two to four interglacial stages in the northern, central and southern basins and under various biogeochemical environments are scrutinized. The vivianite-rich layers were detected by anomalous P-enrichments in bulk geochemistry and visually by observations on X-radiographs. The millimetric concretions of vivianite were isolated by sieving and analysed by X-ray diffraction, scanning electron microscope (SEM), microprobe, infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and mass spectrometry (ICP-AES, ICP-MS). All the vivianites display similar morphological, mineralogical and geochemical signature, suggesting a common diagenetic origin. Their geochemical signature is sensitive to secondary alteration where vivianite concretions are gradually transformed from the rim to the center into an amorphous santabarbaraite phase with a decreasing Mn content. We analysed the spatial and temporal distribution of the concretions in order to determine the primary parameters controlling the vivianite formation, e.g., lithology, sedimentation rates, and porewater chemistry. We conclude that vivianite formation in Lake Baikal is mainly controlled by porewater chemistry and sedimentation rates, and it is not a proxy for lacustrine paleoproductivity. Vivianite accumulation is not restricted to areas of slow sedimentation rates (e.g., Academician and Continent ridges). At the site of relatively fast sedimentation rate, i.e., the Posolsky Bank near the Selenga Delta, vivianite production may be more or less related to the Selenga River inputs. It could be also indirectly related to the past intensive methane escapes from the sediments. While reflecting an early diagenetic signal, the source of P and Fe porewater for vivianites genesis is still unclear. (C) 2004 Elsevier B.V. All rights reserved.
Agafonov, B.P., (1990) Exolithodynamics of the Baikal Rift Zone, , N.A. Logachev Nauka Novosibirsk
Anderson, N.J., Rippey, B., Diagenesis of magnetic minerals in the recent sediments of a eutrophic lake (1988) Limnol. Oceanogr., 33, pp. 1476-1492
Berner, R.A., Sedimentary pyrite formation: An update (1984) Geochim. Cosmochim. Acta, 48, pp. 605-615
Bradbury, J.P., Bezrukova, Ye.V., Chernyaeva, G.P., Colman, S.M., Khursevich, G., King, J.W., Likoshway, Ye.V., A synthesis of post-glacial diatom records from Lake Baikal (1994) J. Paleolimnol., 10, pp. 213-252
Brooks, A.S., Edgington, D.N., Biogeochemical control of phosphorus cycling and primary production in Lake Michigan (1994) Limnol. Oceanogr., 39, pp. 961-968
Burnham, C.W., (1991) LCLSQ Version 8.4, Least-Squares Refinement of Crystallographic Lattice Parameters, , Dept. of Earth and Planetary Sciences, Harvard University
Callender, E., Granina, L., Biogeochemical phosphorus mass balance for Lake Baikal, south-eastern Siberia, Russia (1997) Mar. Geol., 139, pp. 5-19
Callender, E., Granina, L., Geochemical mass balances of major elements in Lake Baikal (1997) Limnol. Oceanogr., 42, pp. 148-155
Ceramicola, S., Rebesco, M., De Batist, M., Khlystov, O., Seismic evidence of small-scale lacustrine drifts in Lake Baikal (Russia) (2001) Mar. Geophys. Res., 22, pp. 445-464
Charlet, F., Fagel, N., De Batist, M., Hauregard, F., Minnebo, B., Sedimentary dynamics on isolated highs in Lake Baikal: Evidence from detailed high-resolution geophysical data and sediment cores (2004) Glob. Planet. Change, 46, pp. 125-144. , 10.1016/j.gloplacha.2004.11.009
Colman, S.M., Kuptsov, B.M., Jones, G.A., Kater, S.J., Radiocarbon dating of Baikal sediments (1993) Geol. Geofiz., 34, pp. 68-78
Colman, S.M., Peck, J.A., Karabanov, E.B., Carter, S.J., Bradbury, J.P., King, J.W., Williams, D.F., Continental climate response to orbital forcing from biogenic silica records in Lake Baikal (1995) Nature, 378, pp. 769-771
Dean, W., Physical properties, mineralogy and geochemistry of holocene varved sediments from Elk Lake, Minnesota (1993) Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States, 276, pp. 135-157. , J.P. Bradbury W.E. Dean Special Paper Geol. Soc. Am. Boulder, CO, USA
Dean, W., A 1500-year record of climatic and environmental change in Elk Lake, Clearwater County, Minnesota II: Geochemistry, mineralogy, and stable isotopes (2002) J. Paleolimnol., 27, pp. 301-319
Deike, R.G., Granina, L., Callender, E., McGee, J.J., Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate (1997) Mar. Geol., 139, pp. 21-46
Demory, F., Nowaczyk, N.R., Witt, A., Oberhänsli, H., High-resolution magnetostratigraphy of late Quartenary sediments from Lake Baikal, Siberia: Timing of intracontinental paleoclimatic responses (2004) Glob. Planet. Change, 46, pp. 167-186. , 10.1016/j.glopacha.2004.09.016
Edgington, D.N., Klump, I.V., Robbins, J.V., Sedimentation rates, residence times and radionuclides inventories in Lake Baikal from 137Cs and 210Pb in sediment cores (1991) Nature, 350, pp. 601-604
Einsele, W., Uber chemische und kolloidchemische Vorgange in Eisen-Phosphat-systemen unter limno-chemische und limnogeologischen Gesichtspunkten (1938) Arch. Hydrobiol., 38, pp. 361-387
Fagel, N., Boski, T., Likhoshway, L., Oberhaensli, H., Late Quaternary clay mineral record in Central Lake Baikal (Academician ridge, Siberia) (2003) Palaeogeogr. Palaeoclimatol. Palaeoecol., 193, pp. 159-179
Farmer, V.C., The infrared spectra of minerals (1974) Miner. Soc. Monogr., 4
Fransolet, A.-M., (1975) Etude Minéralogique et Pétrologique des Phosphates de Pegmatites Granitiques, 333p. , PhD Thesis, University of Liège
Glasauer, S., Weidler, P.G., Langley, S., Beveridge, T., Controls on Fe reduction and mineral formation by a subsurface bacterium (2003) Geochim. Cosmochim. Acta, 67, pp. 1277-1288
Grachev, M.A., Likhoshway, E.V., Vorobyeva, S.S., Signals of the paleoclimates of Upper Pleistocene in the sediments of Lake Baikal (1997) Geol. Geophys., 38, pp. 957-980
Granin, N.G., Granina, L.Z., Gas hydrates and gas venting in Lake Baikal (2002) Russ. Geol. Geophys., 43, pp. 629-637
Granina, L.Z., Consumption of phosphates by Baikal bottom sediments. In: State and perspectives of development of methodology of chemical and biological monitoring (1987) Rostov-na-Donu, 1, pp. 135-136
Granina, L.Z., Vertical profiles of iron and manganese in Baikal porefluids (1991) Geochimija, 10, pp. 1493-1500
Granina, L.Z., Callender, E., Formation of authigenic vivianite in Baikal bottom sediments (2001) Geology of Seas and Oceans. XIV Intern. School on Marine Geology, pp. 250-251. , GEOS Publ. Moscow
Granina, L., Karabanov, E., Callender, E., Relics of oxidized ferromanganese formations in the bottom sediments of Lake Baikal (1993) IPPCCE Newsl., 7, pp. 32-39
Granina, L.Z., Müller, B., Wherli, B., Martin, P., Oxygen, iron, and manganese at the sediment-water interface in Lake Baikal (2000) Terra Nostra, 9, pp. 87-93
Granina, L.Z., Mats, V.D., Khlystov, O.M., Goldberg, E.L., Phedorin, M.A., Vorobyeva, S.S., Semenov, M.Y., Sedimentary Fe/Mn layers in Lake Baikal as evidence of past and present limnological conditions (2003) Long Continental Records from Lake Baikal, pp. 219-229. , K. Kashiwaya Springer Tokyo
Granina, L., Müller, B., Wehrli, B., Origin and dynamics of Fe- and Mn-sedimentary layers in Lake Baikal (2004) Chem. Geol., 205, pp. 55-72
Kjensmo, J., Late and post-glacial sediments in the small meromictic lake Svinsjoen (1968) Arch. Hydrobiol., 65, pp. 125-141
Klerkx, J., Zemskaya, T.I., Solovyev, V.A., Methane hydrates in surface layer of deep-water sediments in Lake Baikal (2003) Dokl. Akad. Nauk, 393, pp. 822-826
Knyazeva, L.M., Vivianite in bottom muds of Lake Baikal (1954) Dokl. Akad. Nauk, 97, pp. 519-522
Likhoshway, Y.V., Fossil endemic centric diatoms from Lake Baikal. Upper pleistocene complexes (1998) Proc. 14th Intern. Diatom Symposium, 1996, pp. 613-628. , S. Manami M. Idei I. Koizumi Koeltz Sci. Books Koenigstein
MacKareth, F.J.H., Some chemical observations on post-glacial lake sediments (1966) Philos. Trans. R. Soc. Lond., 250, pp. 165-213
Mats, W.D., Khlystov, O.M., De Batist, M., Ceramicola, S., Lomonosova, T.K., Klimansky, A., Evolution of the Academician Ridge accommodation zone in the central part of the Baikal Rift, from high-resolution reflection seismic profiling field investigations (2000) Int. J. Earth Sci., 89, pp. 229-250
Mizandrontsev, I.B., Geochemistry of pore water (1975) Dynamics of Baikalian Depression, pp. 203-230. , G.I. Galazy Y.P. Parmuzin Nauka Novosibirsk
Mladova, T.A., Microorganisms in the bottom sediments (1971) Limnology of the Near-Delta Areas of Baikal, pp. 90-95. , Nauka Leningrad
Mortimer, C.H., The exchange of dissolved substances between mud and water in lakes (1941) J. Ecol., 29, pp. 280-329
Müller, G., Forstner, U., Recent iron ore formation in Lake Malawi, Africa (1973) Miner. Depos., 8, pp. 278-290
Müller, B., Granina, L., Schaller, T., Ulrich, A., Wherli, B., P, As, Sb, Mo and other elements in sedimentary Fe/Mn-layers of Lake Baikal (2002) Environ. Sci. Technol., 36, pp. 411-420
Nriagu, J.O., Stability of vivianite and ion-pair formation in the system Fe 3(PO4)2-H3PO4-H 2O (1972) Geochim. Cosmochim. Acta, 36, pp. 459-470
Nriagu, J.O., Dell, C.I., Diagenetic formation of iron phosphates in recent lake sediments (1974) Am. Mineral., 59, pp. 943-946
Patrikeeva, G.I., Geochemistry of phosphorus in the Southern part of Lake Baikal (1963) Hydrochemical Studies of Lake Baikal, pp. 120-143. , Akad. Nauk SSSR Moscow
Pratesi, G., Cipriani, C., Guili, G., Birch, W.D., Santabarbaraite: A new amorphous phosphate mineral (2003) Eur. J. Mineral., 15, pp. 185-192
Rodgers, K.A., Kobe, H.W., Childs, C.W., Characterization of vivianite from Catavi, Llallagua Bolivia (1993) Mineral. Petrol., 47, pp. 193-208
Romashkin, P.A., Williams, D.F., Karabanov, E.B., Gvozdkov, A.H., Geochemical evidence of diagenetic changes and climatic events in Lake Baikal sediments (1993) IPPCCE Newsl., 7, pp. 17-24
Rosenquist, I.Th., Formation of vivianite in Holocene clay sediments (1970) Lithos, 3, pp. 327-334
Stamatakis, M.G., Koukouzas, N.K., The occurrence of phosphate minerals in lacustrine clayey diatomite deposits, Thessaly, Central, Greece (2001) Mar. Geol., 139, pp. 33-47
Stoffers, P., Hecky, R.E., Late Peistocene-Holocene evolution of the Kivu-Tanganyika Basin (1978) Spec. Pub.-Int. Assoc. Sedimentol., 2, pp. 43-55
Taylor, S.R., McLennan, S.M., (1985) The Continental Crust: Its Composition and Evolution, , Blackwell
Vanneste, M., De Batist, M., Golmshtok, A., Kremlev, A., Versteeg, W., Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia (2001) Mar. Geol., 172, pp. 1-21
Van Rensberg, P., De Batist, M., Klerkx, J., Hus, R., Poort, J., Vanneste, M., Granin, N., Krinitsky, P., Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal (2002) Geology, 30, pp. 631-634
Vologina, E.G., Sturm, M., Vorob'Eva, S.S., Granina, L.Z., Toshchakov, S.Yu., Character of sedimentation in Lake Baikal in the Holocene (2003) Russ. Geol. Geophys., 44, pp. 407-421
Weiss, R.F., Carmak, E.C., Koropalov, V.M., Deep-water renewal and biological production in Lake Baikal (1991) Nature, 349, pp. 665-669
Zhmodik, S.M., Mironov, A.G., Grachev, M.A., Bobrov, V.A., Nemirovskaya, N.A., Khlystov, O.M., Zheleznyakova, T.O., Titov, A.T., Uraniferous phosphorites in bottom sediments of Lake Baikal (2001) Dokl. Earth Sci., 379, pp. 682-687
Zhmodik, S.M., Mironov, A.G., Grachev, M.A., Uranium-bearing phosphorites and forms of uranium in bottom sediments of Lake Baikal based on autoradiographic data as related to the problem of paleoclimatic reconstructions (2002) Major Regularities of Global and Regional Climatic and Environmental Changes in Late Cenozoic of Siberia, (1), pp. 190-204. , Novosibirsk, Institute of Archeology and Ethnography SD RAS (in Russian)