Scanning Hall microscopy; ac vortex dynamics; thermally activated flux flow
Abstract :
[en] Using scanning susceptibility microscopy, we shed new light on the dynamics of individual superconducting vortices and examine the hypotheses of the phenomenological models traditionally used to explain the macroscopic ac electromagnetic properties of superconductors. The measurements, carried out on a 2H-NbSe2 single crystal at relatively high temperature T = 6.8 K, show a linear amplitude dependence of the global ac-susceptibility for excitation amplitudes between 0.3 and 2.6 Oe. We observe that the low amplitude response, typically attributed to the oscillation of vortices in a potential well defi ned by a single, relaxing, Labusch constant, actually corresponds to strongly non-uniform vortex shaking. This is particularly pronounced in the fi eld-cooled disordered phase, which undergoes a dynamic reorganization above 0.8 Oe as evidenced by the healing of lattice defects and a more uniform oscillation of vortices. These observations are corroborated by molecular dynamics simulations when choosing the microscopic input parameters from the experiments. The theoretical simulations allow us to reconstruct the vortex trajectories providing deeper insight in the thermally induced hopping dynamics and the vortex lattice reordering.
Disciplines :
Physics
Author, co-author :
Raes, Bart; Katholieke Universiteit Leuven - KUL
de Souza Silva, Clecio C.; Universidade Federal de Pernambuco
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Cabral, Leonardo R.E.; Universidade Federal de Pernambuco
Moshchalkov, Victor V.; Katholieke Universiteit Leuven - KUL
Van de Vondel, Joris; Katholieke Universiteit Leuven - KUL
Language :
English
Title :
Closer look at the low-frequency dynamics of vortex matter using scanning susceptibility microscopy
Publication date :
13 October 2014
Journal title :
Physical Review. B, Condensed Matter
ISSN :
0163-1829
eISSN :
1095-3795
Publisher :
American Institute of Physics, New York, United States - New York
N. Pompeo and E. Silva, Phys. Rev. B 78, 094503 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.78.094503
G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994). RMPHAT 0034-6861 10.1103/RevModPhys.66.1125
A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett. 73, 3580 (1994). PRLTAO 0031-9007 10.1103/PhysRevLett.73.3580
U. Yaron, P. L. Gammel, D. A. Huse, R. N. Kleiman, C. S. Oglesby, E. Bucher, B. Batlogg, D. J. Bishop, K. Mortensen, and K. N. Clausen, Nature (London) 376, 753 (1995). NATUAS 0028-0836 10.1038/376753a0
J. Zhang, L. E. De Long, V. Majidi, and R. C. Budhani, Phys. Rev. B 53, R8851 (1996). 10.1103/PhysRevB.53.R8851
A. Duarte, E. Fernandez Righi, C. A. Bolle, F. de la Cruz, P. L. Gammel, C. S. Oglesby, E. Bucher, B. Batlogg, and D. J. Bishop, Phys. Rev. B 53, 11336 (1996). PRBMDO 0163-1829 10.1103/PhysRevB.53.11336
S. Ryu, M. Hellerqvist, S. Doniach, A. Kapitulnik, and D. Stroud, Phys. Rev. Lett. 77, 5114 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.77.5114
H. Fangohr, S. J. Cox, and P. A. J. de Groot, Phys. Rev. B 64, 064505 (2001). PRBMDO 0163-1829 10.1103/PhysRevB.64.064505
C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. Lett. 103, 168301 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.168301
W. Henderson, E. Y. Andrei, and M. J. Higgins, Phys. Rev. Lett. 81, 2352 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.81.2352
Y. Paltiel, E. Zeldov, Y. Myasoedov, M. L. Rappaport, G. Jung, S. Bhattacharya, M. J. Higgins, Z. L. Xiao, E. Y. Andrei, P. L. Gammel, and D. J. Bishop, Phys. Rev. Lett. 85, 3712 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.85.3712
S. O. Valenzuela and V. Bekeris, Phys. Rev. Lett. 86, 504 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.86.504
S. O. Valenzuela, Phys. Rev. Lett. 88, 247003 (2002). PRLTAO 0031-9007 10.1103/PhysRevLett.88.247003
G. Pasquini, D. P. Daroca, C. Chiliotte, G. S. Lozano, and V. Bekeris, Phys. Rev. Lett. 100, 247003 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.247003
D. P. Daroca, G. S. Lozano, G. Pasquini, and V. Bekeris, Phys. Rev. B 81, 184520 (2010). PRBMDO 1098-0121 10.1103/PhysRevB.81.184520
N. Mangan, C. Reichhardt, and C. J. Olson Reichhardt, Phys. Rev. Lett. 100, 187002 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.187002
Y. Fasano, M. Menghini, F. de la Cruz, Y. Paltiel, Y. Myasoedov, E. Zeldov, M. J. Higgins, and S. Bhattacharya, Phys. Rev. B 66, 020512 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.66.020512
M. Menghini, Y. Fasano, and F. de la Cruz, Phys. Rev. B 65, 064510 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.65.064510
M. Marchevsky, A. Keurentjes, J. Aarts, and P. H. Kes, Phys. Rev. B 57, 6061 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.57.6061
M. W. Coffey and J. R. Clem, Phys. Rev. Lett. 67, 386 (1991). PRLTAO 0031-9007 10.1103/PhysRevLett.67.386
E. H. Brandt, Phys. Rev. Lett. 67, 2219 (1991). PRLTAO 0031-9007 10.1103/PhysRevLett.67.2219
C. J. van der Beek, V. B. Geshkenbein, and V. M. Vinokur, Phys. Rev. B 48, 3393 (1993). PRBMDO 0163-1829 10.1103/PhysRevB.48.3393
J. R. Kirtley, Rep. Prog. Phys. 73, 126501 (2010). RPPHAG 0034-4885 10.1088/0034-4885/73/12/126501
M. P. DeFeo and M. Marchevsky, Phys. Rev. B 73, 184409 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73.184409
R. B. G. Kramer, G. W. Ataklti, V. V. Moshchalkov, and A. V. Silhanek, Phys. Rev. B 81, 144508 (2010). PRBMDO 1098-0121 10.1103/PhysRevB.81.144508
R. B. G. Kramer, A. V. Silhanek, W. Gillijns, and V. V. Moshchalkov, Phys. Rev. X 1, 021004 (2011). 10.1103/PhysRevX.1.021004
B. Raes, J. Van de Vondel, A. V. Silhanek, C. C. de Souza Silva, J. Gutierrez, R. B. G. Kramer, and V. V. Moshchalkov, Phys. Rev. B 86, 064522 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.064522
L. Li, F. Phys. Condens. Matter 17, 493 (2005). JCOMEL 0953-8984 10.1088/0953-8984/17/3/008
J. Brisbois, B. Raes, J. Van de Vondel, V. V. Moshchalkov, and A. V. Silhanek, J. Appl. Phys. 115, 103906 (2014). JAPIAU 0021-8979 10.1063/1.4868298
M. Marchevsky, P. H. Kes, and J. Aarts, Physica C 282-287, 2083 (1997). PHYCE6 0921-4534 10.1016/S0921-4534(97)01147-7
P. Moretti, M.-Carmen Miguel, M. Zaiser, and S. Zapperi, Phys. Rev. Lett. 92, 257004 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.92.257004
M. Chandran, R. T. Scalettar, and G. T. Zimányi, Phys. Rev. B 69, 024526 (2004). PRBMDO 1098-0121 10.1103/PhysRevB.69.024526
R. Labusch, Crystal Lattice Defects 1, 1 (1969).
J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16, 734 (1966). PRLTAO 0031-9007 10.1103/PhysRevLett.16.734
A. Schmid and W. Hauger, J. Low Temp. Phys. 11, 667 (1973). JLTPAC 0022-2291 10.1007/BF00654452
C. C. de Souza Silva and G. Carneiro, Phys. Rev. B 66, 054514 (2002). PRBMDO 0163-1829 10.1103/PhysRevB.66.054514
G. P. Mikitik and E. H. Brandt, Phys. Rev. B 62, 6800 (2000). PRBMDO 0163-1829 10.1103/PhysRevB.62.6800
G. S. Park, C. E. Cunningham, B. Cabrera, and M. E. Huber, Phys. Rev. Lett. 68, 1920 (1992). PRLTAO 0031-9007 10.1103/PhysRevLett.68.1920
C. J. Olson, C. Reichhardt, and F. Nori, Phys. Rev. Lett. 81, 3757 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.81.3757
G. Carneiro and E. H. Brandt, Phys. Rev. B 61, 6370 (2000). PRBMDO 0163-1829 10.1103/PhysRevB.61.6370
M. Timmermans, T. Samuely, B. Raes, J. Van de Vondel, and V. V. Moshchalkov, ACS Nano 8, 2782 (2014). ANCAC3 1936-0851 10.1021/nn4065007