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Using scanning susceptibility microscopy, we shed new light on the dynamics of individual super-
conducting vortices and examine the hypotheses of the phenomenological models traditionally used
to explain the macroscopic ac electromagnetic properties of superconductors. The measurements,
carried out on a 2H-NbSe2 single crystal at relatively high temperature T = 6.8 K, show a linear
amplitude dependence of the global ac-susceptibility for excitation amplitudes between 0.3 and 2.6
Oe. We observe that the low amplitude response, typically attributed to the oscillation of vortices
in a potential well defined by a single, relaxing, Labusch constant, actually corresponds actually to
strongly non-uniform vortex shaking. This is particularly pronounced in the field-cooled disordered
phase, which undergoes a dynamic reorganization above 0.8 Oe as evidenced by the healing of lattice
defects and a more uniform oscillation of vortices. These observations are corroborated by molecular
dynamics simulations when choosing the microscopic input parameters from the experiments. The
theoretical simulations allow us to reconstruct the vortex trajectories providing deeper insight in
the thermally induced hopping dynamics and the vortex lattice reordering.

PACS numbers: 74.78.-w 74.25.F- 74.25.Wx 74.40.Gh

I. INTRODUCTION

The low frequency response of type-II superconductors
to electromagnetic excitations is ruled by the dynamics
of quantum units of magnetic flux, so called vortices1.
These are three dimensional elastic entities interacting
repulsively, typically immersed in a random environment
of pinning centers. Moreover, in most cases the influence
of thermal excitations cannot be neglected, especially in
the technologically relevant high temperature supercon-
ductors, adding an extra ingredient to this already com-
plex problem2.

The competing vortex-vortex and vortex-pinning cen-
ter interactions can give rise to a vortex distribution com-
posed of patches of locally ordered vortex lattice sepa-
rated by topological defects where the symmetry of the
lattice is violated (e.g. disclinations). The healing of
these defects can, under certain conditions, be obtained
by submitting the vortex lattice to an external excitation.
Indeed, it has already been shown both theoretically and
experimentally, that a disordered vortex lattice resulting
from a relatively strong random pinning distribution, can
undergo a dynamical reordering transition when driven
by a dc external force F > Fdp, where Fdp is the de-
pining force 3–8. This transition not always consists of
a monotonous and progressive healing of topological de-
fects as the drive increases, but in some cases a maximum
of disclinations in the vortex lattice is observed at the on-
set of depinning F ∼ Fdp3,5.

Although particular effort has been devoted to under-
stand the dynamic behavior under dc drive, somewhat
less attention has been paid to ac excitations9–15. Un-

fortunately, the extrapolation of the findings obtained
under dc drive to predict the ac dynamics is not always
straightforward. For instance, it has been reported that
for similar excitation amplitude, dc experiments can in-
duce disorder in the vortex lattice while ac shaking leads
to ordering9–12.

Despite the continuous progress made during the last
decades, our current understanding of the complex dy-
namic behavior of vortex lattices relies on observables
involving a statistical average over a large number of
vortices16 or, at best, through local static imaging5,17–19.
Global measurements rely on introducing certain as-
sumptions on the average vortex motion thus losing the
details of individuals, very much like when bridging ther-
modynamics to statistical physics. For instance, the sur-
face impedance of the superconducting material at low ac
amplitudes can be deduced from the assumption that the
coupling between vortices and pinning centers is given
by a single and isotropic spring constant known as the
Labusch constant 20–22. The expected macroscopic re-
sponse is then determined by combing the obtained com-
plex impedance with both Faraday’s and Ampère’s law.

The question now arises as to whether the simplified
hypotheses used in these models are actually valid at the
microscopic level. It is difficult to find the answer to this
question based on static imaging, since snapshots lack
the time variable, essential to track the history encoded
in the vortex trajectories and to unveil the characteristic
time scales involved in the vortex hopping.

In this work we investigate the ac dynamics of indi-
vidual superconducting vortices by going beyond static
imaging. We have chosen to perform these experiments
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FIG. 1. Figure 1. (Color online) (a) Schematic overview of the scanning susceptibility microscopy setup. A superconducting
sample is placed in a dc magnetic field, H, generated by a superconducting coil surrounding a collinear copper coil generating an
ac field hac(t). The time averaged magnetic field profile due to the present vortices and the screening currents is schematically
shown by the black lines. The magnifying glass provides a closer look to the induced ac-vortex motion. When the drive is
small, the ac magnetic field induces a periodic force on the vortices shaking them back and forth. A Hall sensor picks up locally
the associated time dependent Hall voltage, VHall. A lock-in amplifier, provided with both hac(t) as a reference and VHall are
shown in (b), allows one to extract both the in-phase, b′1(x, y), and the out-of phase, b′′1 (x, y), components of the local magnetic
response.

on NbSe2, arguably one of the most extensively stud-
ied type-II superconductor. We monitored the average
vortex distribution with scanning Hall probe microscopy
(SHPM)23 and the local ac vortex dynamics using scan-
ning ac-susceptibility microscopy (SSM)24–27. In partic-
ular, we use the combination of both techniques to map
the development and evolution of the different dynamical
states as a function of driving amplitude when starting
from an initially disordered vortex lattice. The local ob-
servation and characterization of these dynamical states
unveils a far more richer and complex scenario than the
one pictured from the mean ac response using the afore-
mentioned models. More precisely, a coarsening of topo-
logical defects initially present in a prepared disordered
vortex state is observed in situ upon increasing the ex-
ternal ac magnetic field. This dynamical re-organization
is strongly influenced by the thermal hopping of vortices,
resulting in a much faster VL reordering as compared
to the T = 0 K case. In addition, in the disordered
state the results reveal a highly non-uniform oscillatory
motion reflecting the local anisotropic properties of the
potential landscape felt by individual vortices whereas
the ordered state exhibits a more coherent motion. The
strong out-of-phase component of the vortex motion can
be unambiguously attributed to the dissipative character
of the thermally activated motion over the pinning po-
tential. These experimental findings are corroborated by
molecular dynamics simulation which shows an excellent
agreement with the experimental results.

II. EXPERIMENTAL DETAILS

The sample under investigation is a 2H-NbSe2 single
crystal of approximate dimensions 2.5 × 2.5 × 0.5 mm3,
grown by a standard iodine vapor transport method28,
which has a critical temperature of Tc = 7.05 K at zero
magnetic field.

The vortex distribution is probed by measuring the
z-component of the time averaged local induction,
〈bz(x, y, t)〉t, with a modified low-temperature scanning
Hall probe microscope from Nanomagnetics Instruments.
The typical scan area at 4.2 K is 16×16 µm2. The im-
ages were recorded in lift-off mode with the Hall sensor
at about 1.5 µm above the surface of the sample29. Addi-
tional xy-positioners allow us to explore different regions
of the sample.

To probe the ac vortex dynamics, we continuously ex-
cite the sample with an external oscillating magnetic
field, hac(t) = Hac sin(ωt), while picking up the Hall volt-
age induced by the time-varying local induction bz(x, y, t)
as shown in Fig.1. The collinear dc and ac external
magnetic fields are always applied perpendicularly to the
sample surface. The time dependent local induction,
bz(x, y, t) ∼ VHall(x, y, t) picked up by the Hall probe,
is Fourier analyzed with a lock-in amplifier using the ap-
plied ac magnetic field as reference,

bz(x, y, t) =∑∞
n=1[b′n(x, y) sin(nωt) + b′′n(x, y) cos(nωt)] (1)

The first term (n = 1) of the Fourier series in Eq.1,
i.e. the in-phase, b′1(x, y), and out-of phase, b′′1(x, y),
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FIG. 2. (Color online) (a) Vortex configuration at 4.2 K after a field-cooling experiment in H = 1 Oe applied perpendicular
to the sample surface. The Voronoi construction is plotted on top of the image. (b) A sequence of two different field-cooling
experiments in 0.9 Oe, imaged at 4.2 K. (c) Difference image between the two aforementioned experiments at 0.9 Oe. (d)
Typical vortex configuration obtained from molecular dynamics simulations on a weakly disordered 2D superconducting system
(cf. section IV).

Fourier components, are normally dominant and rep-
resent the linear response to the local variation of the
magnetic induction, thus bz(x, y, t) ≈ b′1(x, y) sin(ωt) +
b′′1(x, y) cos(ωt). To avoid unwanted effects such as eddy
current heating, the skin effect of the sample holder or
the frequency dependence of the Hall probe sensitivity,
we perform all measurements at a fixed low driving fre-
quency of f =ω/2π=77.123 Hz. The dwell time at ev-
ery pixel (τpix) and the integration time of the lock-in
(τint) are chosen appropriately (τpix, τint � 1/f) while
the measured phase between the picked up signal and the
ac magnetic field drive is set to zero above Tc.

III. EXPERIMENTAL RESULTS

A. Generation of frozen weakly disordered vortex
states

An initial disordered vortex state is prepared following
a field-cooling (FC) procedure, in which the sample tem-
perature is decreased from above Tc at a constant field,
H, applied along the c axis, down to 4.2 K. This final
temperature is well below the so-called quenching tem-
perature, Tq, at which the bulk pinning freezes the vortex
lattice in a stable configuration30. The dc fields in our
experiments, H ≤ 1 Oe, are well below the field range
where the peak-effect anomaly is observed in high-purity
NbSe2 samples18.

Figure 2(a) shows a typical vortex configuration for
H = 1.0 Oe at T = 4.2 K. The average flux density as-
sociated with such distribution is B ' 0.9 G, which indi-

cates a rather uniform flux distribution over the sample.
The vortex configuration corresponds to a weakly dis-
ordered distribution as consequence of the random pin-
ning. As evidenced by the Voronoi diagram plotted on
top of the image, within the observed area, most of the
topological defects are bound pairs of positive (seven-
fold defects highlighted in blue) and negative (five-fold
defects in green) disclinations. Moreover, most of them
are clustered together. Such morphology is consistent
with previous imaging experiments on pure NbSe2 sin-
gle crystals17,19 as well as with numerical simulations on
2D vortex systems interacting with random weak pinning
distributions31,32. Figure 2(b) shows the vortex configu-
rations in the same sample region for two different runs
of a FC procedure performed at H = 0.9 Oe. When sub-
tracting the two images in panel (b) the image shown in
figure 2(c) is obtained. We clearly see from this differen-
tial image that vortices occupy different positions for two
independent FC runs. This suggests that the quenched
disorder in the sample comprises a highly dense distribu-
tion of weak pinning centers, thus providing a multitude
of energetically quasi-equivalent metastable states rather
than favoring a particular configuration. For compari-
son, we show in figure 2(d) a typical vortex distribution
obtained from the molecular dynamics (MD) simulations
described in Section IV. The root-mean-square strength
of the random pinning potential was suitably tuned in
order to have a frozen vortex state with a morphology
similar to the experiment.
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FIG. 3. In-phase (circles) and out-of-phase (squares) compo-
nents of the background signal averaged over the scan area
as functions of the ac amplitude Hac at T = 6.8 K and after
a H = 1.0 Oe FC procedure. The lines are linear fits to the
data.

B. Mean ac response: identification of the
dynamical regime

Let us now identify the dynamical regime of the vor-
tex state within the context of the macroscopic response
theory, after a H = 1.0 Oe FC procedure to T = 6.8
K. To that end, we investigate the amplitude depen-
dence of the signal measured via the SSM technique av-
eraged over the scan area for ac amplitude values rang-
ing from 0.3 Oe to 2.6 Oe while keeping the dc field at
1.0 Oe. Figure 3 shows the amplitude dependence of
both 〈b′lock-in〉 and 〈b′′lock-in〉 as detected by the lock-in
amplifier. A clear linear dependence is observed, sug-
gesting that the mean response lies within a well-defined
linear dynamical regime characterized by a single phase-
lag φ = tan−1(〈b′′lock-in〉/〈b′lock-in〉). Its value, as calcu-
lated from least square fits (solid lines in the figure),
φ = (−66.7 ± 1.4)◦, is far from zero thus revealing a
strongly dissipative dynamics. Notice that there is no
hint in this average response of a possible dynamic tran-
sition in the vortex lattice.

In the literature on linear vortex response, one usually
considers an averaged version of the equation of motion
where the coupling among vortices and between vortices
and pinning centers are represented by a single scalar,
field-dependent spring constant, αL, called the Labusch
constant33. In this model, vortex displacements u are as-
sumed to be parallel to the applied drive and the restor-
ing force is simply given by

Fres = −αLu, (2)

which, ignoring thermal fluctuations, yields the vortex
response in the frequency domain34:

u(ω) = χ(ω)Fac (3)

χ(ω) = (αL − iωη)
−1
. (4)

Here the dispersive vortex response function χ(ω) is a
complex scalar and η is the viscous drag coefficient in-
duced by dissipative processes of quasiparticles within
the vortex core. This induces a viscous drag force op-
posing the vortex motion, which introduces a phase lag
with respect to the drive given by tan−1(ω/ωp), where
ωp = αL/η = τp

−1 is the pinning frequency. This viscous
drag force is only significant at high vortex speeds and
becomes appreciable when either the driving frequency
or the drive amplitude are high enough. For high fre-
quencies (typically microwave) vortices tend to shake in-
side pinning centers making tiny displacements, in such
a way that the restoring force can be neglected. In the
limit of strong drive, vortices move past many pinning
sites at a high speed and the pinning potential is washed
out3,35,36. Since in our experiments both frequency and
amplitude are small, a more plausible scenario for the
observed dissipation is a linear dynamical regime domi-
nated by thermally activated vortex hopping.

As pointed out by Brandt21, thermally activated vor-
tex hopping from one pinning site to another results
in a relaxing Labusch parameter αL(t) = αLe

−t/τr ,
where τr is the relaxation time determined by the Ar-
rhenius form τr ∼ τpe

U0/kT (U0 represent the typi-
cal value of the pinning energy barriers). Within lin-
ear response theory, such time-dependent restoring force
constant is accounted for by the complex parameter
αL/(1 − i/ωτr)

20–22. The general solution for the lin-
ear vortex response including thermally assisted hopping
is given by the real part of u(ω, T )eiωt with

u(ω, T ) = χ(ω, T )Fac (5)

χ(ω, T ) =

(
αL

1− i/ωτr
− iηω

)−1

. (6)

Indeed, within the mean-field Coffey-Clem-Brandt
model [Eqs. (5) and (6)] and assuming that the exci-
tation frequency lies in the regime ω � αL/η = ωp,
the mean magnetic permeability can be estimated as
µ(ω) = 〈b〉/hac ∝ 1 − i/ωτr, from which we obtain the
mean hopping time τr = 1/[ω tan(−φ)] = 0.83 ± 0.06
ms. For the excitation fields used in our experiment one
period of the external force spans about 15.5τr. This re-
sult is consistent with the previously assumed thermal
hopping scenario27.

However, one should keep in mind that such analysis
represents a statistical average and, in general, it is not
valid on the scale of single vortex dynamics. In fact, for
a disordered vortex arrangement, the energy landscape
probed locally by a vortex as a result of interactions
with other vortices and with pinning centers is far from
isotropic. Moreover the motion of each vortex couples to
the motion of its neighbors as a result of vortex-vortex
interactions. Therefore, it is clear that a single coupling
constant depending only on an average pinning force and
the local flux density is insufficient to accurately describe
the dynamics on a local scale.
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FIG. 4. (Top row) Scanning Hall probe microscopy images of the local induction, bz(x, y), acquired at a temperature of
T = 6.8 K and a dc magnetic field H = 1.0 Oe while shaking with an external applied ac field of frequency f = 77.123 Hz
and increasing amplitude (left to right) Hac = 0.3, 0.8, 1.0, 1.2, and 2.6 Oe. The Voronoi construction is plotted on top of
the image. The numbers in the center of some Voronoi polygons indicate the coordination number ν of the respective vortex.
(Center and bottom rows) Simultaneously acquired maps of (center) in-phase, b′v(x, y), and (bottom) out-of-phase, b′′v (x, y),
response components. To unify the color map scale, we normalized both b′v and b′′v by 10−3Hac (in gaussian units). The black
arrow in the bottom panel of Hac = 2.6 Oe indicates schematically the direction of the ac screening currents.
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FIG. 5. The Hac dependence of the real part of the aver-
age six-fold bond-angle order parameter as obtained from the
data presented in Fig.4. Higher values of ψ6 indicate closer
proximity to a perfect triangular lattice. The Error bars are
standard deviations from the mean.

C. Local ac response: evidence of dynamical
ordering

In principle, the signals 〈b′lock-in〉 and 〈b′′lock-in〉 contain
the response of the screening currents plus the average
vortex response. In order to isolate the local ac response
produced only by the vortices within a scan area, two
steps are needed. Firstly, for each probe position, we sub-
tract from the measured signal the background response
generated by all currents except those encircling the vor-
tices within the scan area. Notice that vortices moving
back and forth without ever leaving the scan area have a
negligible contribution to the net ac response and hence
the background signal is approximately uniform and can
be estimated as bbkg ≈ 〈b′lock-in〉+ i〈b′′lock-in〉. Secondly, it
is convenient to refer to the dephasing of the signal with
respect to the actual Lorentz force that drives the vor-
tices in the scan area instead of the applied field hac(t).
Such force can be estimated as FL = Φ0ẑ × jbkg, where
jbkg = ∇× bbkg(r, t), and thus has the time dependence
bbkg ∼ cos(ωt+φ). Following this two-step procedure it is
possible to obtain the in-phase, b′v, and out-of-phase, b′′v ,
components representing the local response of the vor-
tices by subtracting the background from the measured
signal and rotating the result by φ, that is:
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b′v = (b′lock-in − 〈b′lock-in〉) cosφ

−(b′′lock-in − 〈b′′lock-in〉) sinφ

b′′v = (b′lock-in − 〈b′lock-in〉) sinφ

+(b′′lock-in − 〈b′′lock-in〉) cosφ (7)

Figure 4 summarizes the evolution of the initial dis-
ordered vortex state upon increasing Hac at the same
experimental conditions of Figure 3. From left to right,
the top row in Fig.4 shows a representative subset of ac-
quired time-averaged vortex distributions for Hac = 0.3,
0.8, 1.0, 1.2, 2.0 and 2.6 Oe, respectively. These im-
ages are obtained by measuring the time-averaged local
magnetic induction, 〈bz(x, y, t)〉t with SHPM, while the
vortices react to the applied ac magnetic field. The scan
area comprises about 16 vortices which never leave the
image within the investigated amplitude range, thus jus-
tifying the application of the procedure adopted to re-
move the background. The middle and bottom panels
show the simultaneously acquired in-phase, b′v(x, y), and
out-of-phase, b′′v(x, y), response components.

The evolution of the vortex pattern as well as the mo-
tion of individual vortices reveal a picture far richer than
that suggested by the simple linear behaviour of the back-
ground response. For small amplitudes, Hac < 1.0 Oe,
the average vortex positions remain unaltered from the
original disordered FC state. In spite of that, the local ac
response indicates that more and more vortices partici-
pate on the dynamics as Hac is increased from 0.3 to 0.8
Oe. Moreover, in this amplitude range, vortices shake in
different directions and with different amplitudes. This
is in strong contrast with mean field models of vortex re-
sponse, which assume vortices to shake in the same direc-
tion that the applied Lorentz force. This finding, can be
understood as a result of the local anisotropy of vortex-
vortex interactions and the disorder of the restoring force
strength probed by each vortex. As a startling result,
some vortices seem to simply stop moving at a higher
excitation (Encircled vortex in Fig.4, Hac = 0.3 and 0.8
Oe) suggesting that tiny changes in vortex positions can
change considerably the energy landscape probed by the
vortex, either because of different pinning conditions or
a different excited mode of the vortex array.

From Hac = 1.0 Oe on the vortex configuration evolves
towards a considerably more ordered vortex state. As the
amplitude is further increased, the vortex arrangement
progressively acquires the triangular symmetry. Con-
comitantly, the shaking directions become more corre-
lated to each other and parallel to a principal axis of the
triangular lattice. Notice that up to Hac = 2.0 Oe the
maxima of magnetic induction are well-defined indicat-
ing that the shaking amplitude of all vortices is much
smaller than the lattice constant. At Hac = 2.6 Oe, the
dc image is considerably blurred along a particular di-
rection. However, for this amplitude range the ac-images
present a highly correlated motion. This indicates that
the travel range of a single vortex does not exceed the

lattice constant, but is sufficiently large to result in a
low and blurred time averaged vortex signal. A similar
transition in the dynamical properties of the same pre-
pared state was observed upon increasing the tempera-
ture while keeping H and Hac constant.

To better quantify the amount of order in the local
vortex configuration, we have calculated the coordination
number of each of the four central vortices in the image.
The calculation consists of finding all local maxima in the
images, which we identify as the mean vortex position,
and then performing a Voronoi construction. Since at
2.6 Oe, the image is considerably blurred by the shaking
of vortices, for an accurate estimate of the mean vortex
positions at this particular ac field value, we obtained the
Voronoi construction using the zeroes in the SSM data.
For Hac < 1.0 Oe, all four central vortices can be iden-
tified as either 5-fold or 7-fold disclinations comprising
part of a probably larger cluster of topological defects.
Above 1.0 Oe, these defects are gradually healed, becom-
ing sixfold-coordinated vortices, as the vortex arrange-
ment approaches a triangular lattice. This enhancement
of the orientational order can be observed more quan-
titatively in Fig.5. This figure shows the real part of
the six-fold bond-angle order parameter, defined here as
ψ6 = 〈e6iθkj 〉kj , where the average is taken over about 50
bond pairs (k, j), which could be unambiguously identi-
fied by triangulation over each vortex configuration found
as described above. Higher values of ψ6 indicate closer
proximity to a perfect triangular lattice.

It is worth mentioning that within the whole ampli-
tude range the imaginary component of the vortex re-
sponse is considerably larger than the real component,
indicating that thermally assisted vortex hopping plays
a major role during the ac shaking. However, since the
response is highly nonlinear in a broad amplitude range,
applying any of the known mean-field models to extract
the hopping time is hardly justifiable.

IV. NUMERICAL SIMULATIONS

A. Model and numerical details

Finite samples are known to be strongly influenced by
nonlocal electromagnetic effects due to their boundaries,
which determine the current distribution everywhere in
the sample. In this work the vortex dynamics is probed
within a small scan area as compared to the sample
dimensions, where the current density induced by the
Meissner effect and outside vortices, jbkg, can be con-
sidered uniform37. Since, in the linear regime, jbkg is
proportional to Hac (cf. Sec. III-C), the effect of the
sample boundaries over the vortex dynamics in the scan
area is reduced to the proportionality factor between the
Lorentz force acting on these vortices and Hac. There-
fore, simulating the response of vortices in an infinite
(borderless) superconductor to a uniform Lorentz force
will provide us a representative qualitative insight over
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the mechanisms behind the strong dissipation and dy-
namical reordering observed in the experimental data of
Fig.4.

We performed molecular dynamics simulations of vor-
tices interacting with a random pinning potential in a
2D superconducting system. The vortex-vortex pair po-
tential is modelled as Uvv(rij) = εK0(rij/λ), where
ε = φ2

0/(2πµ0λ) is the energy scale. Here, we take
λ(0) = 150 nm (typical for NbSe2) and a reduced tem-
perature T/Tc = 0.965 = 6.8 K/7.05 K, which sets our
length scale to λ = 0.80 µm. The magnetic flux density
is fixed at B = 1.0 Oe, which is equivalent to a vortex
density nv = 0.037 λ−2 similar to the experiment. The
disorder induced by defects in the sample is modelled as a
random pinning potential Up(x, y) smoothed on a length
scale ξp

38. The input parameters for generating Up(x, y)
are ξp and the root-mean-square height of the pinning po-
tential U0, which we adopt as the pinning energy scale.
Because vortices can not resolve distances smaller than
the coherence length ξ, we chose ξp = 0.06625λ, which
corresponds with a value of ξ for NbSe2 at a reduced
temperature T/Tc = 0.965. As stated in Ref. 7, ran-
dom pinning potentials smoothed over the scale of ∼ ξ
represent a more realistic scenario for weak-pinning ma-
terials like NbSe2 as compared, for instance, to mod-
els of diluted, non-overlapping distributions of parabolic
traps12,15,31,32.

The dynamics of the vortex system subjected to an
ac drive F(t) = A cosωt is simulated by a standard
Langevin dynamics algorithm, which essentially corre-
sponds to numerically integrating the overdamped equa-
tion of motion:

ηṙi(t) = −∇iEp −∇iEvv + F(t) + Γi(t), (8)

where ri(t) is the vortex position and ∇i the gradient
operator with respect to ri(t). Here Ep =

∑
j Up(rj) is

the total pinning energy, Evv = 1
2

∑
jk Uvv(rjk) is the

total vortex-vortex interaction energy and Γi(t) is the
Langevin force, representing thermal fluctuations of the
vortices. A possible inertial term, not shown in Eq. (8),
is accepted to be very small so that there is a short (neg-
ligible) initial period of acceleration needed to reach the
steady state motion we consider.

We ran simulations on a rectangular box of size Lx×Ly
(Ly =

√
3Lx/2) with periodic boundary conditions for

system sizes Lx = 60λ (48 µm), 120λ (96 µm) and
180λ (144 µm). All results discussed below are qualita-
tively the same for all investigated system sizes. There-
fore, we will present only results from the smaller system
(60 × 51.96 λ2) for which a more detailed analysis was
performed.

Before analyzing the ac vortex response, we thermalize
the vortex distribution following a simulated annealing
scheme, where the Langevin force in Eq. (8) is slowly de-
creased down to zero. This way, vortices are settled in a
low energy configuration. The value of U0 was chosen in a
way as to result in a weakly disordered vortex lattice even

at zero temperature. A typical configuration is shown in
Fig. 2(d). In what follows we take U0 = 1.9 × 10−4ε,
which, as shown below, results in a vortex configuration
with 17.4% of defects. In fact, this requirement is ful-
filled for a range of U0 values (∼ 10−4 − 10−3ε). Within
this range, a similar behavior of the vortex response was
observed. The corresponding Labusch constant is esti-
mated as αL = 6.03 × 10−2 ε/λ2. The calculated value
of U0 = 0.8meV and αL = 6.33 × 10−8N/m are at least
one order of magnitude smaller than what is found in
literature for strong pinning Nb films39 at 4.5 K and Pb
films27 at 6.9 K. Subsequently, the temperature is fixed
at the desired value and a uniform ac excitation of an-
gular frequency ω is applied. The response of the vor-
tex system is then studied as a function of excitation
amplitude. In all calculations we used a drive period
P = 105t0, where t0 = ηλ2/ε, corresponding to a fre-
quency ω = 6.28× 10−5 t−1

0 much smaller than the typi-
cal pinning frequency ωp = αL/η = 6.03× 10−2 t−1

0 . We
run simulations for different drive orientations θ and ob-
served that the results are qualitatively independent on
this parameter. All results presented below correspond
to θ = −60◦ with respect to the horizontal axis. The
initial configurations correspond to a temperature below
the freezing point Tf ' 3.3U0, below which the vortex
configuration keeps unchanged at zero drive.

In order to characterize the response of each individual
vortex to the ac shaking we compute the in-phase, ζ ′i1,
and out-of-phase, ζ ′′i1, components of its displacement in
direction ζ = x or y:

ζ ′i1 + iζ ′′i1 =
2

∆t

∫ ∆t

0

dt ζ(t)[cosωt+ i sinωt] (9)

where ∆t is the measuring time corresponding to an inte-
ger number of periods. Here we took ∆t = 5P . The over-
all response is quantified by the mean in-phase and out-
of-phase components of vortex displacements, defined as

u1 = u′1 + iu′′1 =
1

N

N∑
j=1

[√
x′2j1 + y′2j1 + i

√
x′′2j1 + y′′2j1

]
(10)

The topological order is evaluated by counting the num-
ber of topological defects (vortices with coordination
number different from 6) and averaging it over the mea-
suring time ∆t. The orientational order is characterized
by the real part of the time-averaged sixfold bond-angle

order parameter, 1
∆t

∫∆t

0
dt〈e6iθkj 〉, where θkj are the in-

stantaneous angles between first-neighbour bonds. The
time integrals were performed after an interval of typi-
cally 10 periods.

B. Dynamical reordering

Fig. 6 shows the evolution of orientational order (quan-
tified by <{ψ6}) and number of defects (Nd) as the drive
amplitude is increased [panels (a) and (b), respectively].
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FIG. 6. (a), (b): Amplitude dependence of (a) the real part
of the time-averaged sixfold bond-angle order parameter and
(b) time-averaged number of defects normalized by the total
number of vortices. The curves are plotted for three different
temperature values as labeled in panel (a). (c-e) Snapshots of
vortex configurations and Voronoi constructions for the points
indicated in panel (b). Defects of positive (negative) topolog-
ical charge are depicted in light (dark) gray. The black arrows
indicate schematically the direction of the ac driving force.

For T = 0, the healing of defects is preceded by an in-
crease in Nd and concomitant deterioration of the orien-
tational order, which is a signature of plastic dynamics,
with strong relative motion between vortices5,6,40. Only
at an amplitude somewhat larger, A ' 0.01, the num-
ber of defects decreases below its zero amplitude value.
At this amplitude and above vortices move over several
vortex-lattice spacings, as revealed by the in-phase and
out-of-phase vortex displacements, u′1 and u′′1 , shown in
figure 7(a), (|u1| & 102λ ∼ 18 lattice spacings). It then
becomes clear that, for T = 0 and low drive frequency,
the mechanism behind the healing of defects is similar to
the plastic-to-elastic transition of vortices moving under
a dc drive and thereby related to the dynamical washout
of the pinning potential. Indeed, the response in this
amplitude range approaches that of the pin-free flux-flow
regime (u = iA/ηω).

A very different picture emerges for T > 0. Here the
appropriate time scale is roughly given by τr = τpe

U0/kT ,
which depends upon the ratio U0/kT and leads to a
characteristic frequency ωr = τ−1

r � ωp, comparable to
the low frequencies considered here. For T = 0.36U0/k,
ωr/ω ≈ 0.21. Clearly, the hopping dynamics, responsible
for the relaxation mechanism, plays an important role in
the response. Indeed, for such temperature, at the onset
of reordering, the healing of defects is much faster than
for T = 0 and there is no proliferation of defects preced-
ing the ordering transition. This means that, upon in-
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FIG. 7. (a and b) Real (u′1) and imaginary (u′′1 ) parts of the
first harmonic of the vortex displacements averaged over all
vortices for T = 0 (a) and T = 0.36U0/k(b). The shaded
regions correspond to the amplitude range where the defect
density effectively decrease below its static value reaching a
minimum value. For comparison, we show the response pre-
dicted for the flux-flow regime, u = iA/ηω (red dashed curve).
(c) Root-mean-square values of the in-phase (circles) and out-
of-phase (squares) components of vortex response within the
scan area as functions of hac.

creasing amplitude, the vortex array goes through a quick
transition from a pinned disordered lattice to a moving
elastic phase, with no intermediate plastic phase. In con-
trast to the T = 0 case, here, for amplitudes close to the
ordering transition, vortex excursions are restricted to
distances considerably smaller than λ [see behavior of u1

in Fig. 7(b)], pointing to an entirely different ordering
mechanism, ruled by thermal hopping of vortices.

In Fig. 7(c) we plot the rms values of the in-phase
and out-of-phase components of the vortex response as
a function of amplitude as derived from Fig.4 within a
single scan area. Although the intensity of the magnetic
response of a single vortex is proportional to its rms dis-
placement (see the Appendix), a similar connection for
the case where several vortices are shaking is not straight-
forward. That is because the contributions of each vortex
to the magnetic response measured at the Hall probe po-
sition overlap considerably in this case. However, a few
general qualitative conclusions about the vortex dynam-
ics can be drawn. First notice that during the whole ex-
periment vortex displacements are restricted to distances
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(a)

(d) (e)
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FIG. 8. (a) and (b): density plots of the real (a) and imaginary (b) components of the first harmonic of the vortex flux
distribution, bv, in a 26×26 λ2 area of the sample for a driving force amplitude A = 0.5×10−3ε/λ. (d)-(f): contour plots of the
absolute value of bv for drive amplitudes A = 0.5, 1.0 and 3.0 (in units of ×10−3ε/λ) respectively. Individual vortex trajectories
during one forcing period are also shown. For better visualization, all vortex trajectories with respect to their mean position
were magnified by a factor M = 4 (d) and M = 3 (e). Panel (c) is a zoom-in of the 2.6×2.6 λ2 region depicted in (f) and
shows one vortex trajectory and the pinning landscape nearby. The black arrows indicate schematically the direction of the ac
driving force.

smaller than the vortex lattice spacing, as is evidenced
by clear vortex spots in the dc images shown in Fig.4. It
is precisely in this amplitude range that in both, the MD
simulations at finite temperature and the experiment, re-
ordering takes place as indicated by the green shaded
area in Fig. 7(b). Moreover, by comparing Fig. 7(b) and
Fig. 7(c) a qualitative agreement is observed in the rela-
tive contribution of the real and imaginary components
of the vortex response. This is in contrast to Fig. 7(a)
where reordering takes place when the vortices move over
several lattice constants. As such, it confirms the MD
model is able to capture the main physical ingredients
ruling the vortex dynamics in our system and that the
vortex motion is ruled by thermally activated vortex mo-
tion.

C. Trajectories of a single vortex

In previous works25–27, we have demonstrated that the
SSM technique is capable of extracting useful information
of individual vortex dynamics with single vortex resolu-
tion. Here we will benefit from the MD simulation to
analyse the vortex trajectories at much smaller scales.
Let us first establish a connection between our theoreti-
cal calculations and the experimental observations on a
local scale. To that end, we calculated the first harmonic

of the local flux density, bz(r, t), induced by the ac vortex
dynamics at a distance z0 = 0.5λ away from the sample
surface:

b′v(x, y)+ib′′v(x, y) =
2

∆t

∫ ∆t

0

dt b(r, t)[cosωt+i sinωt] (11)

These results are shown in Fig. 8. The contribution of
each vortex to the flux density at the probe position
r = (x, y, z0) and instant t was accounted for by using
the monopole approximation for a vortex flux profile41.
The results are presented for T = 0.36U0/k and a few am-
plitude values. Notice the remarkable resemblance with
the experimental data shown in Fig. 4.

For comparison, we also plot the vortex trajectories,
which reveal that, despite the rather erratic dynamics of
the vortices, specially at smaller drive amplitudes, their
main direction of motion can be captured by the abso-
lute value of bv(x, y). Moreover, the intensity of peaks
and valleys of bv near a given vortex is, in general, pro-
portional to the amplitude of motion of that vortex (c.f.
the Appendix). This allows us to witness the pronounced
uncorrelated dynamics at small drive amplitude [panels
(a), (b), (d) and (e)], where vortices shake with very dif-
ferent amplitudes and directions (away from the drive
direction), in excellent agreement with the experimen-
tal data. In contrast, when reordering takes place [panel
(f)] the motion becomes more uniform (i.e. higher cor-
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relation) and both the direction of motion and the main
axis of the triangular lattice align themselves to the drive
direction, also in agreement with our experimental obser-
vations.

A closer look at a typical vortex trajectory is presented
in panel (c) together with a contour plot of the local pin-
ning landscape. The trajectories were plotted by tracing
the position of the vortex every 103 time steps. This
makes it possible to observe that vortices spend much
more time trapped by some favorable pinning centers
than traveling between them. Therefore the dynamics
under those conditions is essentially ruled by hoping of
vortices between the most favorable pinning sites. These
observations are in agreement with recent scanning tun-
neling microscopy experiments on similar NbSe2 crystals
having a much denser flux line lattice42.

V. CONCLUSIONS

In conclusion, in this work we investigated the local ac
dynamics of a disordered vortex state upon increasing
drive by a combination of two local probing techniques,
scanning Hall probe microscopy and scanning suscepti-
bility microscopy. Our experimental data provided direct
evidence of dynamical healing of topological defects as
the ac excitation amplitude is increased. Moreover, the
SSM images revealed two very different behaviors of
the individual vortex response: uncorrelated dynamics,
where vortices shake at different directions with different
amplitudes, and correlated dynamics, where, upon the
healing of defects, the directions of motion of all vortices
align and they respond almost in unison. The observed
microscopic dynamics is confronted to the extensively
used phenomenological microscopic models of vortex
motion proposed to explain the macroscopic response.
We show that the approximations made in these mean
field models, which provide us with information about
the microscopic parameters averaged over the whole
vortex ensemble, represent a simplified picture of the
much richer ac dynamics. MD simulations are used to
gain further insight in the thermally driven organization
of the vortex motion. Furthermore, they allow to study
the complexity of the vortex trajectories beyond the
mean field models and otherwise hidden by the limited
resolution of the SHPM/SSM techniques.
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Appendix: Visualization of the vortex dynamics
using the SSM technique

Here we show explicitly that the main direction of mo-
tion can be captured by the absolute value of bv(x, y),
measured in the SSM experiments. We denote with
bz(r, t) the magnetic induction carried by a single vortex,
shaking back and forth around its equilibrium position,
ri0. When the deviations from equilibrium are small, we
can expand the flux density carried by a single vortex
around ri = ri0

bz(r, t) = bz(r− ri) =

∞∑
p=0

(−δri · ∇)p
bz(r− ri0)

p!
, (A.1)

where δri = ri−ri0 is the vortex displacement. By keep-
ing terms up to the second order in the vortex displace-
ments, it can be shown that the first Fourier component
of the vortex flux density is given by,

bv(x, y) = −δr1i · ∇bz(r− ri0). (A.2)

where, δr1i = (x1i, y1i) is the complex vortex displace-
ment as defined in Eq. 9. In other words, within second
order approximation, bv is just the directional derivative
of the flux induced by the vortex at its equilibrium posi-
tion. Therefore, the direction of strong gradients in bv
can be identified as the direction of the vortex response
(see Eq. A.2). Notice that the length scale in the case of
a diluted vortex distribution for ∇bz(r− ri0) is the pen-
etration depth. This scale exceeds, in the linear regime,
typical vortex displacements and hence one can safely
keep the leading order terms in Eq. A.1.
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