[en] Electrical resistivity tomography (ERT) can be used to constrain seawater intrusion models because of its high sensitivity to total dissolved solid contents (TDS) in groundwater and its relatively high lateral coverage. However, the spatial variability of resolution in electrical imaging may prevent the correct recovery of the desired hydrochemical properties such as salt mass fraction. This paper presents a sequential approach to evaluate the feasibility of identifying hydraulic conductivity and dispersivity in density-dependent flow and transport models from surface ERT-derived mass fraction. In the course of this study, geophysical inversion was performed by using a smoothness constraint Tikhonov approach, whereas the hydrological inversion was performed using a gradient-based Levenberg-Marquardt algorithm. Two synthetic benchmarks were tested. They represent a pumping experiment in a homogeneous and heterogeneous coastal aquifer, respectively. These simulations demonstrated that only the lower salt mass fraction of the seawater-freshwater transition zone can be recovered for different times. This ability has here been quantified in terms of cumulative sensitivity and our study has further demonstrated that the mismatch between the targeted and the recovered salt mass fraction occurs from a certain threshold. We were additionally able to explore the capability of sensitivity-filtered ERT images using ground surface data only to recover (in both synthetic cases) the hydraulic conductivity while the dispersivity is more difficult to estimate. We attribute the latter mainly to the lack of ERT-derived data at depth (where resolution is poorer) as well as to the smoothing effect of the ERT inversion.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Beaujean, Jean ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Nguyen, Frédéric ; Université de Liège - ULiège > Département ArGEnCo > Géophysique appliquée
Kemna, A.
Antonsson, A.
Engesgaard, P.
Language :
English
Title :
Calibration of seawater intrusion models: Inverse parameter estimation using surface electrical resistivity tomography and borehole data
Abarca, E. (2006), Seawater intrusion in complex geological environments, PhD thesis, Dep. of Geotech. Eng. and Geo-Sci., Tech. Univ. of Catalonia, Catalonia, Spain.
Archie, G. E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pet. Eng., 146, 54-61.
Barnabé, Y., U. Mok, and B. Evans (2003), Permeability-porosity relationships in rocks subjected to various evolution processes, Pure Appl. Geophys., 160(5-6), 937-960, doi:10.1007/PL00012574.
Bear, J., A. Cheng, S. Sorek, D. Ouazar, and I. Herrera (Eds) (1999), Seawater intrusion in coastal aquifers—Concepts, methods and practices, in Theory and Applications of Transport in Porous Media, vol. 14, Kluwer Acad., Dordrecht, Netherlands.
Binley, A., G. Cassiani, R. Middleton, and P. Winship (2002), Vadoze zone flow model parameterization using cross-borehole radar and resistivity imaging, J. Hydrol., 267(7), 147-159.
Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. Slooten (2005), Inverse problem in hydrogeology, Hydrogeol. J., 13(1), 206-222, doi:10.1007/s10040-004-0404-7.
Carrera, J., J. J. Hidalgo, and E. Vazquez-Sune (2009), Computational and conceptual issues in the calibration of seawater intrusion models, Hydrogeol. J., 18(1), 131-145, doi:10.1007/s10040-009-0524-1.
Cassiani, G., G. Bohm, A. Vesnaver, and R. Nicolich (1998), A geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity estimation, J. Hydrol., 29(1-2), 58-74, doi:10.1016/S0022-1694(98)00084-5.
Caterina, D., J. Beaujean, T. Robert, and F. Nguyen (2013), Comparison of image appraisal tools for electrical resistivity tomography, Near Surf. Geophys., 11(6), 639-657, doi:10.3997/1873-0604.2013022.
Cheng, A. H.-D., and D. Ouazar (Eds.) (2004), Coastal Aquifer Management: Monitoring, Modeling, and Case Studies, 296 pp., CRC Press, Boca Raton, Fla.
Compte, J.-C., and O. Banton (2007), Cross-validation of geo-electrical and hydrological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402, doi:10.1029/2007GL029981.
Dagan, G. (2006), Transverse mixing at fresh-water salt-water interfaces: An unresolved issue, paper presented at the 1st SWIM-SWICA—First International Joint Salt Water Intrusion Conference (19th Saltwater Intrusion Meeting/3rd Saltwater Intrusion in Coastal Aquifers), Automated time-Lapse Electrical Resistivity Tomography (ALERT), Cagliari, Italy.
Dahlin, T., and B. Zhou (2004), A numerical comparison of 2D resistivity imaging with ten electrode arrays, Geophys. Prospect., 52, 379-398.
Day-Lewis, F. D., K. Singha, and A. Binley (2005), Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations, J. Geophys. Res., 110, B08206, doi:10.1029/2004JB003569.
Doherty, J. (2004), PEST: Model-Independent Parameter Estimation. User Manual, 5th ed., 336 pp., Watermark Numerical Computing, Brisbane, Australia.
Ferré, F., L. Bentley, A. Binley, N. Linde, A. Kemna, K. Singha, K. Holliger, J. A. Huisman, and B. Minsley (2009), Critical steps for the continuing advancement of hydrogeophysics, Eos Trans. AGU, 90(23), 200, doi:10.1029/2009EO230004.
Goldman, M., and U. Kafri (2006), Hydrogeophysical applications in coastal aquifers, in Applied Hydrogeophysics, edited by H. Vereecken et al., pp. 233-254, Springer, Netherlands.
Guhl, F., A. Pulido-Bosch, P. Pulido-Leboeuf, J. Gisbert, F. Sanchez-Martos, and A. Vallejos (2006), Geometry and dynamics of the freshwater-seawater interface in a coastal aquifer in southern Spain, Hydrol. Sci. J., 51(3), 543-555.
Gupta, S. K. (2010), Modern Hydrology and Sustainable Water Development, 464 pp., John Wiley. & Sons Ltd, Chichester, West Sussex, U. K.
Hayley, K., L. R. Bentley and A. Pidlisecky (2010), Compensating for temperature variations in time-lapse electrical resistivity difference imaging, Geophysics, 75(4), WA51-WA59, doi:10.1190/1.3478208.
Henderson, R. D., F. D. Day-Lewis, E. Abarca, C. F. Harvey, H. N. Karam, L. Liu and J. W. Lane Jr. (2010), Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA, Hydrogeol. J., 18, 173-185, doi:10.1007/s10040-009-0498-z.
Herckenrath, D., N. Odlum, V. Nenna, R. Knight, E. Auken, and P. Bauer-Gottwein (2012), Calibrating a salt water intrusion model with time-domain electromagnetic data, Ground Water, 51(3), 385-397, doi:10.1111/j.1745-6584.2012.00974.x.
Hermans, T., A. Vandenbohede, L. Lebbe, R. Martin, A. Kemna, J. Beaujean and F. Nguyen (2012), Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data, J. Hydrol., 438-439, 168-180, doi:10.1016/j.jhydrol.2012.03.021.
Hill, M. C., and C. R. Tiedeman (Eds.) (2007), Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty, 404 pp., John Wiley, Hoboken, N. J.
Hughes, J. D., J. T. White, and C. D. Langevin (2010), Use of time series and harmonic constituents of tidal propagation to enhance estimation of coastal aquifer heterogeneity, paper presented at the SWIM21—21st Salt Water Intrusion Meeting, Ponta Delgada, Portugal.
Huntley, D. (1986), Relations between permeability and electrical resistivity in granular aquifers, Ground Water, 24(4), 466-474, doi:10.1111/j.1745-6584.1986.tb01025.x.
Huyakorn, P. S., P. F. Andersen, J. W. Mercer, and H. O. White Jr. (1987), Saltwater intrusion in aquifers: Development and testing of a three-dimensional finite element model, Water Resour. Res., 23(2), 293-312.
Kemna, A. (2000), Tomographic inversion of complex resistivity: Theory and application, PhD thesis, Ruhr-Univ., Bochum, Germany.
Koukadaki, M., G. Karatzas, M. Papadopoulou, and A. Vafidis (2007), Identification of the saline zone in a coastal aquifer using electrical tomography data and simulation, J. Water Resour. Manage., 21(11), 1881-1898, doi:10.1007/s11269-006-9135-y.
LaBrecque, D., M. Miletto, W. Daily, A. Ramirez, and E. Owen (1996), The effects of noise on Occam’s inversion of resistivity tomography data, Geophysics, 61(2), 538-548, doi:10.1190/1.1443980.
Lebbe, L. (1999), Parameter identification in fresh-saltwater flow based on borehole resistivities and freshwater head data, Adv. Water Resour., 22(8), 791-806.
Linde, N., A. Binley, A. Tryggvason, L. B. Pedersen, and A. Revil (2006), Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar travel time data, Water Resour. Res., 42, W12404, doi:10.1029/2006WR005131.
Mallants, D., A. Espino, M. Van Hoorick, J. Feyen, N. Vandenberghe, and W. Loy (1999), Dispersivity estimates from a tracer experiment in a sandy aquifer, Ground Water, 38(2), 304-310, doi:10.1111/j.1745-6584.2000.tb00341.x.
Michael, H. A., A. E. Mulligan, and C. F. Harvey (2005), Seasonal oscillations in water exchange between aquifers and the coastal ocean, Nature, 436, 1145-1148, doi:10.1038/nature03935.
Morrow, F. J., M. R. Ingham, and J. A. McConchie (2010), Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography, J. Hydrol., 389(1-2), 69-77, doi:10.1016/j.jhydrol.2010.05.022.
Nguyen, F., A. Kemna, A. Antonsson, P. Engesgaard, O. Kuras, R. Ogilvy, J. Gisbert, S. Jorreto, and A. Pulido-Bosch (2009), Characterization of seawater intrusion using 2D electrical imaging, Near Surf. Geophys., 7(5-6), 377-390, doi:10.3997/1873-0604.2009025.
Ogilvy, R. D., et al. (2009), Automated monitoring of coastal aquifers with electrical resistivity tomography, Near Surf. Geophys., 7(5-6), 367-375, doi:10.3997/1873-0604.2009027.
Pandit, A., C. C. El-Khazen, and S. P. Sivaramapillai (1991), Estimation of hydraulic conductivity values in a coastal aquifer, Ground Water, 29(2), 175-180, doi:10.1111/j.1745-6584.1991.tb00507.x.
Poeter, E. P., M. C. Hill, E. R. Banta, S. Mehl, and S. Christensen (2005), UCODE and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, U.S. Geol. Surv. Tech. Methods, 6-A11, 283 pp.
Sanz, E., and C. I. Voss (2006), Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem, Adv. Water Resour., 29, 439-457, doi:10.1016/j.advwatres.2005.05.014.
Schön, J. H. (2004), Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, Handbook of Geophysical Exploration, vol. 18, Pergamon, U. K.
Shalev, E., A. Lazar, S. Wollman, S. Kington, Y. Yechieli, and H. Gvirtzman (2009), Biased monitoring of fresh water-salt water mixing zone in coastal aquifers, Ground Water, 47(1), 49-56, doi:10.1111/j.1745-6584.2008.00502.x.
Shoemaker, W. B. (2004), Important observations and parameters for salt water intrusion model, Ground Water, 42(6), 829-840, doi:10.1111/j.1745-6584.2004.t01-2-.x.
Sun, N. Z., M. C. Jeng, and W. W. G. Yeh (1995), A proposed geological parametrization method for parameter-identification in 3-dimensional groundwater modeling, Water Resour. Res., 31(1), 89-102.
Therrien, R., R.-G. McLaren, E.-A. Sudicky, and S. M. Panday (2010), HydroGeoSphere: A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport, 443 pp., Groundwater Simul. GroupLaval & Waterloo Univ., Waterloo, Ontario.
Van Meir, N. (2001), Density-dependent groundwater flow: Design of a parameter identification test and 3D-simulation of sea-level rise, PhD thesis, Ghent Univ., Ghent, Belgium.
Van Meir, N., and L. Lebbe (2005), Parameter identification for axi-symmetric density-dependent groundwater flow based on drawdown and concentration data, J. Hydrol., 309(1-4), 167-177, doi:10.1016/j.jhydrol.2004.11.019.
Vandenbohede, A., L. Lebbe, R. Adams, E. Cosyns, P. Durinck, and A. Zwaenepoel (2010), Hydrological study for improved nature restoration in dune ecosystems-Kleyne Vlakte case study, Belgium, J. Environ. Manage., 91(11), 2385-2395, doi:10.1016/j.jenvman.2010.06.023.
Vecchia, A. V., and R. L. Cooley (1987), Simultaneous confidence and prediction intervals for non-linear regression models with application to a groundwater flow model, Water Resour. Res., 22(2), 95-108.
Wagner, S. R., and S. M. Gorelick (1987), Optimal groundwater quality management under parameter uncertainty, Water Resour. Res., 23(7), 1162-1174.
Werner, A. D., and C. T. Simmons (2009), Impact of sea-level rise on sea water intrusion in coastal aquifers, Ground Water, 47(2), 197-204, doi:10.1111/j.1745-6584.2008.00535.x.
Werner, A. D., M. Bakker, V. E. A. Post, A. Vandenbohede, C. Lu, B. Ataie-Ashtiani, C. T. Simmons, and D. A. Barry (2012), Seawater intrusion processes, investigation and management: Recent advances and future challenges, Adv. Water Resour., 51, 3-26, doi:10.1016/j.advwatres.2012.03.004.
Yechieli, Y., U. Kafri, M. Goldman, and C. I. Voss (2001), Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling, Hydrogeol. J., 9, 367-377, doi:10.1007/s100400100146.