Arguelles Arias, A., Craig, M., Fickers, P., Gram-positive antibiotic biosynthetic clusters: A review (2011) Formatex Research Center, 2, pp. 977-986
Stein, T., Bacillus subtilis antibiotics: Structures, syntheses and specific functions (2005) Mol. Microbiol, 56 (4), pp. 845-857
Van Kraaij, C., De Vos, W.M., Siezen, R.J., Kuipers, O.P., Lantibiotics: Biosynthesis, mode of action and applications (1999) Nat. Prod. Rep, 16 (5), pp. 575-587
Knerr, P.J., Van Der Donk, W.A., Discovery Biosynthesis, and engineering of lantipeptides (2012) Annu. Rev. Biochem, 81, pp. 479-505
Bierbaum, G., Sahl, H.G., Lantibiotics: Mode of action, biosynthesis and bioengineering (2009) Curr. Pharmaceut. Biotechnol, 10 (1), pp. 2-18
McAuliffe, O., Ross, R.P., Hill, C., Lantibiotics: Structure, biosynthesis and mode of action (2001) FEMS Microbiol. Rev, 25 (3), pp. 285-308
Willey, J.M., Van Der Donk, W.A., Lantibiotics: Peptides of diverse structure and function (2007) Annu. Rev. Microbiol, 61, pp. 477-501
Altena, K., Guder, A., Cramer, C., Bierbaum, G., Biosynthesis of the lantibiotic mersacidin: Organization of a type B lantibiotic gene cluster (2000) Appl. Environ. Microbiol, 66 (6), pp. 2565-2571
McAuliffe, O., Hill, C., Ross, R.P., Each peptide of the twocomponent lantibiotic lacticin 3147 requires a separate modification enzyme for activity (2000) Microbiology, 146 (PART 9), pp. 2147-2154
Draper, L.A., Ross, R.P., Hill, C., Cotter, P.D., Lantibiotic immunity (2008) Curr. Protein Pept. Sci, 9 (1), pp. 39-49
Chatterjee, C., Paul, M., Xie, L., Van Der Donk, W.A., Biosynthesis and mode of action of lantibiotics (2005) Chem. Rev, 105 (2), pp. 633-684
Hsu, S.T., Breukink, E., Bierbaum, G., Sahl, H.G., De Kruijff, B., Kaptein, R., Van Nuland, N.A., Bonvin, A.M., NMR study of mersacidin sacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity (2003) J. Biol. Chem, 278 (15), pp. 13110-13117
Kordel, M., Schuller, F., Sahl, H.G., Interaction of the pore forming- peptide antibiotics Pep 5, nisin and subtilin with non-energized liposomes (1989) FEBS Lett, 244 (1), pp. 99-102
Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G., Sahl, H.G., Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics (1998) Mol. Microbiol, 30 (2), pp. 317-327
Breukink, E., Van Heusden, H.E., Vollmerhaus, P.J., Swiezewska, E., Brunner, L., Walker, S., Heck, A.J., De Kruijff, B., Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes (2003) J. Biol. Chem, 278 (22), pp. 19898-19903
Suda, S., Cotter, P.D., Hill, C., Ross, R.P., Lacticin 3147 - Biosynthesis, molecular analysis, immunity, bioengineering and applications (2012) Curr. Protein Pept. Sci, 13 (3), pp. 193-204
Halimi, B., Dortu, C., Arguelles Arias, A., Thonart, P., Joris, B., Fickers, P., Antilisterial Activity on Poultry Meat of Amylolysin, a Bacteriocin from Bacillus amyloliquefaciens GA1 (2010) Probiotics Antimicrob. Protein, 2, pp. 120-125
Arguelles Arias, A., Ongena, M., Devreese, B., Terrak, M., Joris, B., Fickers, P., Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1 (2013) PLos ONE, 8 (12), pp. e83037
Cooper, L.E., McClerren, A.L., Chary, A., Van Der Donk, W.A., Structure-activity relationship studies of the two-component lantibiotic haloduracin (2008) Chem. Biol, 15 (10), pp. 1035-1045
Mascher, T., Zimmer, S.L., Smith, T.A., Helmann, J.D., Antibioticinducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis (2004) Antimicrob. Agents Chemother, 48 (8), pp. 2888-2896
Arguelles Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., Fickers, P., Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens (2009) Microb. Cell Fact, 8, p. 63
Methods for dilution antimicrobial susceptibility tests for bacteria that growth aerobically
Approved standard (2009) CLSI M7 A8, (2). , Intitute, C.a.L.S
Burkard, M., Stein, T., Microtiter plate bioassay to monitor the interference of antibiotics with the lipid II cycle essential for peptidoglycan biosynthesis (2008) J. Microbiol. Methods, 75 (1), pp. 70-74
Fickers, P., Le Dall, M.T., Gaillardin, C., Thonart, P., Nicaud, J.M., New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica (2003) J. Microbiol. Methods, 55 (3), pp. 727-737
Fickers, P., Guez, J.S., Damblon, C., Leclere, V., Bechet, M., Jacques, P., Joris, B., High-level biosynthesis of the anteiso-C (17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity (2009) Appl. Environ. Microbiol, 75 (13), pp. 4636-4640
Sims, P.J., Waggoner, A.S., Wang, C.H., Hoffman, J.F., Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles (1974) Biochemistry, 13 (16), pp. 3315-3330
Wiedemann, I., Benz, R., Sahl, H.G., Lipid II-mediated pore formation by the peptide antibiotic nisin: A black lipid membrane study (2004) J. Bacteriol, 186 (10), pp. 3259-3261
Hoffmann, A., Pag, U., Wiedemann, I., Sahl, H.G., Combination of antibiotic mechanisms in lantibiotics (2002) Farmaco, 57 (8), pp. 685-691
Islam, M.R., Nishie, M., Nagao, J., Zendo, T., Keller, S., Nakayama, J., Kohda, D., Sonomoto, K., Ring A of nukacin ISK-1: A lipid II-binding motif for type-A(II) lantibiotic (2012) J. Am. Chem. Soc, 134 (8), pp. 3687-3690