Chakravarty, S., and Varadarajan, R. (2002) Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 41: 8152-8161.
Chirico, G., Cannone, F., Beretta, S., Diaspro, A., Campanini, B., Bettati, S., etal. (2002) Dynamics of green fluorescent protein mutant2 in solution, on spin-coated glasses, and encapsulated in wet silica gels. Protein Sci 11: 1152-1161.
Feller, G. (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22: 323101.
Feller, G., and Gerday, C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1: 200-208.
Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E., and Ban, N. (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431: 590-596.
Geitner, A.J., and Schmid, F.X. (2012) Combination of the human prolyl isomerase FKBP12 with unrelated chaperone domains leads to chimeric folding enzymes with high activity. J Mol Biol 420: 335-349.
Gerday, C., and Glansdorff, N. (2007) Physiology and Biochemistry of Extremophiles. Washington, DC, USA: ASM Press.
Harrison, R.K., and Stein, R.L. (1990) Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. Biochemistry 29: 3813-3816.
Hartl, F.U., and Hayer-Hartl, M. (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16: 574-581.
Hoffmann, A., Bukau, B., and Kramer, G. (2010) Structure and function of the molecular chaperone trigger factor. Biochim Biophys Acta 1803: 650-661.
Hoffmann, A., Becker, A.H., Zachmann-Brand, B., Deuerling, E., Bukau, B., and Kramer, G. (2012) Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol Cell 48: 63-74.
Horikoshi, K., Antranikian, G., Bull, A.T., Robb, F.T., and Stetter, K.O. (2011) Extremophiles Handbook. Tokyo: Springer-Verlag.
Huang, G.C., Li, Z.Y., Zhou, J.M., and Fischer, G. (2000) Assisted folding of D-glyceraldehyde-3-phosphate dehydrogenase by trigger factor. Protein Sci 9: 1254-1261.
Inouye, M., and Phadtare, S. (2004) Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci STKE 2004: pe26.
Jakob, R.P., and Schmid, F.X. (2008) Energetic coupling between native-state prolyl isomerization and conformational protein folding. J Mol Biol 377: 1560-1575.
Jakob, R.P., and Schmid, F.X. (2009) Molecular determinants of a native-state prolyl isomerization. J Mol Biol 387: 1017-1031.
Jakob, R.P., Zoldak, G., Aumuller, T., and Schmid, F.X. (2009) Chaperone domains convert prolyl isomerases into generic catalysts of protein folding. Proc Natl Acad Sci USA 106: 20282-20287.
Kandror, O., and Goldberg, A.L. (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94: 4978-4981.
Kerner, M.J., Naylor, D.J., Ishihama, Y., Maier, T., Chang, H.C., Stines, A.P., etal. (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122: 209-220.
Knappe, T.A., Eckert, B., Schaarschmidt, P., Scholz, C., and Schmid, F.X. (2007) Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding. J Mol Biol 368: 1458-1468.
Kramer, G., Rauch, T., Rist, W., Vorderwulbecke, S., Patzelt, H., Schulze-Specking, A., etal. (2002) L23 protein functions as a chaperone docking site on the ribosome. Nature 419: 171-174.
Kramer, G., Patzelt, H., Rauch, T., Kurz, T.A., Vorderwulbecke, S., Bukau, B., and Deuerling, E. (2004a) Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J Biol Chem 279: 14165-14170.
Kramer, G., Rutkowska, A., Wegrzyn, R.D., Patzelt, H., Kurz, T.A., Merz, F., etal. (2004b) Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. J Bacteriol 186: 3777-3784.
Kumar, S., and Nussinov, R. (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58: 1216-1233.
Lakshmipathy, S.K., Gupta, R., Pinkert, S., Etchells, S.A., and Hartl, F.U. (2010) Versatility of trigger factor interactions with ribosome-nascent chain complexes. J Biol Chem 285: 27911-27923.
Maier, R., Scholz, C., and Schmid, F.X. (2001) Dynamic association of trigger factor with protein substrates. J Mol Biol 314: 1181-1190.
Martinez-Hackert, E., and Hendrickson, W.A. (2009) Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138: 923-934.
Mayr, L.M., Willbold, D., Landt, O., and Schmid, F.X. (1994) Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1. Protein Sci 3: 227-239.
Mayr, L.M., Odefey, C., Schutkowski, M., and Schmid, F.X. (1996) Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique. Biochemistry 35: 5550-5561.
Merz, F., Hoffmann, A., Rutkowska, A., Zachmann-Brand, B., Bukau, B., and Deuerling, E. (2006) The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J Biol Chem 281: 31963-31971.
Merz, F., Boehringer, D., Schaffitzel, C., Preissler, S., Hoffmann, A., Maier, T., etal. (2008) Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J 27: 1622-1632.
Mucke, M., and Schmid, F.X. (1994) Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds. Biochemistry 33: 14608-14619.
Piette, F., D'Amico, S., Struvay, C., Mazzucchelli, G., Renaut, J., Tutino, M.L., etal. (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76: 120-132.
Piette, F., Struvay, C., and Feller, G. (2011a) The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 13: 1924-1933.
Piette, F., D'Amico, S., Mazzucchelli, G., Danchin, A., Leprince, P., and Feller, G. (2011b) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77: 3881-3883.
Pysz, M.A., Ward, D.E., Shockley, K.R., Montero, C.I., Conners, S.B., Johnson, M.R., and Kelly, R.M. (2004) Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima. Extremophiles 8: 209-217.
Robin, S., Togashi, D.M., Ryder, A.G., and Wall, J.G. (2009) Trigger factor from the psychrophilic bacterium Psychrobacter frigidicola is a monomeric chaperone. J Bacteriol 191: 1162-1168.
Schmid, F.X. (2005) Prolyl isomerization in protein folding. In Protein Folding Handbook. Buchner, J., and Kiefhaber, T. (eds). Weinheim, Germany: Wiley-VCH, pp. 916-945.
Schmidpeter, P.A., Jahreis, G., Geitner, A.J., and Schmid, F.X. (2011) Prolyl isomerases show low sequence specificity toward the residue following the proline. Biochemistry 50: 4796-4803.
Scholz, C., Stoller, G., Zarnt, T., Fischer, G., and Schmid, F.X. (1997) Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J 16: 54-58.
Schonbrunn, E., Eschenburg, S., Luger, K., Kabsch, W., and Amrhein, N. (2000) Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc Natl Acad Sci USA 97: 6345-6349.
Shi, Y., Fan, D.J., Li, S.X., Zhang, H.J., Perrett, S., and Zhou, J.M. (2007) Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor. Protein Sci 16: 1165-1175.
Siddiqui, K.S., and Cavicchioli, R. (2006) Cold-adapted enzymes. Annu Rev Biochem 75: 403-433.
Struvay, C., Negro, S., Matagne, A., and Feller, G. (2013) Energetics of protein stability at extreme environmental temperatures in bacterial trigger factors. Biochemistry 52: 2982-2990.
Suno, R., Taguchi, H., Masui, R., Odaka, M., and Yoshida, M. (2004) Trigger factor from Thermus thermophilus is a Zn2+-dependent chaperone. J Biol Chem 279: 6380-6384.
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., etal. (2008) Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105: 10949-10954.
Uversky, V.N., Gillespie, J.R., and Fink, A.L. (2000) Why are 'natively unfolded' proteins unstructured under physiologic conditions? Proteins 41: 415-427.
Velazquez Campoy, A., and Freire, E. (2005) ITC in the post-genomic era...? Priceless. Biophys Chem 115: 115-124.
Vieille, C., and Zeikus, G.J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65: 1-43.
Wang, Z., Tong, W., Wang, Q., Bai, X., Chen, Z., Zhao, J., etal. (2012) The temperature dependent proteomic analysis of Thermotoga maritima. PLoS ONE 7: e46463.
Xie, J.B., and Zhou, J.M. (2008) Trigger factor assisted folding of green fluorescent protein. Biochemistry 47: 348-357.
Zoldak, G., and Schmid, F.X. (2011) Cooperation of the prolyl isomerase and chaperone activities of the protein folding catalyst SlyD. J Mol Biol 406: 176-194.
Zoldak, G., Aumuller, T., Lucke, C., Hritz, J., Oostenbrink, C., Fischer, G., and Schmid, F.X. (2009) A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases. Biochemistry 48: 10423-10436.