[en] Molecular biology techniques such as PCR constitute powerful tools for the determination of the taxonomic origin of bones. DNA degradation and contamination by exogenous DNA, however, jeopardise bone identification. Despite the vast array of techniques used to decontaminate bone fragments, the isolation and determination of bone DNA content are still problematic. Within the framework of the eradication of transmissible spongiform encephalopathies (including BSE, commonly known as "mad cow disease"), a fluorescence in situ hybridization (FISH) protocol was developed. Results from the described study showed that this method can be applied directly to bones without a demineralisation step and that it allows the identification of bovine and ruminant bones even after severe processing. The results also showed that the method is independent of exogenous contamination and that it is therefore entirely appropriate for this application.
Research Center/Unit :
Centre wallon de Recherches agronomiques
Disciplines :
Food science Veterinary medicine & animal health Animal production & animal husbandry Agriculture & agronomy
Author, co-author :
Lecrenier, Marie-Caroline ✱; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appl. aux sc. vétér.
Ledoux, Quentin ✱; Centre wallon de Recherches agronomiques > Département Valorisation des productions > Unité Qualité des produits
Berben, Gilbert; Centre wallon de Recherches agronomiques > Département Valorisation des productions > Unité Authentification et traçabilité
Fumière, Olivier; Centre wallon de Recherches agronomiques > Département Valorisation des productions > Unité Authentification et traçabilité
Saegerman, Claude ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appl. aux sc. vétér.
Baeten, Vincent; Centre wallon de Recherches agronomiques > Département Valorisation des productions > Unité Qualité des produits
Veys, Pascal; Centre wallon de Recherches agronomiques > Département Valorisation des productions > Unité Qualité des produits
✱ These authors have contributed equally to this work.
Language :
English
Title :
Determination of the ruminant origin of bone particles using fluorescence in situ hybridization (FISH).
Ottoni, C. et al. Preservation of ancientDNAin thermally damaged archaeological bone. Naturwissenschaften 96, 267-278 (2009).
Iwamura, E. S., Soares-Vieira, J. A. & Munoz, D. R. Human identification and analysis of DNA in bones. Rev. Hosp. Clin. Fac. Med. Sao Paulo 59, 383-388 (2004).
Marmiroli, N. et al. Methods for detection of GMOs in food and feed. Anal. Bioanal. Chem. 392, 369-384 (2008).
Paabo, S. et al. Genetic analyses from ancient DNA. Annu Rev Genet 38, 645-679 (2004). (Pubitemid 40013740)
Fumière, O., Marien, A., Fernández Pierna, J. A., Baeten, V. & Berben, G. Development of a real-time PCR protocol for the species origin confirmation of isolated animal particles detected by NIRM. Food Addit. Contam. 27, 1118-1127 (2010).
European Union. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union L 147, 1-40 (2001).
European Commission. Commission Regulation (EU) No 51/2013 of 16 January 2013 amending Regulation (EC) No 152/2009 as regards the methods of analysis for the determination of constituents of animal origin for the official control of feed Text with EEA relevance. Off. J. Eur. Union L 20, 33-43 (2013).
Veys, P., Berben, G., Dardenne, P. & Baeten, V. [Detection and identification of animal by-products in animal feed for the control of transmissible spongiform encephalopathies] Animal Feed Contamination-Effects on Livestock and Food Safety. [Fink-Gremmels, J. (ed.)] [104-110] (Woodhead Publishing Ltd., 2012).
European Commission. Commisson regulation (EU) No 56/2013 of 16 January 2013 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union L 21, 3-16 (2013).
Plouvier, B. M. et al. Détection des protéines animales transformées: expérience et perspectives européennes. Rev. Sci. Tech. Off. Int. Epizoot. 31, 1011-1031 (2012).
Wolff, D. J. & Schwartz, S. [Fluorescence In Situ Hybridization] The Principles of Clinical Cytogenetics [Gersen, S. L. & Keagle, M. B. (eds.)] [455-489] (Humana Press, 2005).
Pardue, M. L. & Gall, J. G. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. U.S.A. 64, 600-604 (1969).
John, H. A., Birnstiel, M. L. & Jones, K. W. RNA-DNA Hybrids at the Cytological Level. Nature 223, 582-587 (1969).
Pinkel, D., Straume, T.,Gray, J. W. Cytogenetic analysis using quantitative, highsensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. U.S.A. 83, 2934-2938 (1986). (Pubitemid 16041776)
Moter, A. & Gobel, U. B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 41, 85-112 (2000). (Pubitemid 30411942)
Serakinci, N. & Kølvraa, S. [Molecular Cytogenetic Applications in Diagnostics and Research: An Overview] Fluorescence In Situ Hybridization (FISH)-Application Guide [Liehr, T. (ed.)] [3-21] (Springer Berlin Heidelberg, 2009).
Joos, S., Fink, T. M., Ratsch, A. & Lichter, P. Mapping and chromosome analysis: the potential of fluorescence in situ hybridization. J. Biotechnol. 35, 135-153 (1994). (Pubitemid 24218790)
Watakabe, A., Komatsu, Y., Ohsawa, S. & Yamamori, T. Fluorescent in situ hybridization technique for cell type identification and characterization in the central nervous system. Methods 52, 367-374 (2010).
Sforza, S., Corradini, R., Tedeschi, T. & Marchelli, R. Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chem. Soc. Rev. 40, 221-232 (2011).
Schweitzer, M. H., Zheng, W., Cleland, T. P. & Bern, M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 52, 414-423 (2013).
Vermeulen, P., Baeten, V. & Dardenne, P. [The STRATFEED project: A European initiative to tackle the problematic detection of MBM in compound feed] Strategies and methods to detect and quantify mammalian tissues in feedingstuffs. [1-14] (Office des publications de l'Union européenne, Luxembourg, 2005).
European Commission. Commission Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal byproducts and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive Text with EEA relevance. Off. J. Eur. Union L 54, 1-254 (2011).
Fumière, O., Dubois, M., Baeten, V., von Holst, C. & Berben, G. Effective PCR detection of animal species in highly processed animal byproducts and compound feeds. Anal. Bioanal. Chem. 385, 1045-1054 (2006). (Pubitemid 43992160)
EURL-AP, EURL-AP Standard Operating Procedure-Detection of ruminant DNA in feed using real-time PCR [text file]., (2013). Date of access: 23/06/2014 Available from http://eurl.craw.eu/en/187/method-of-reference-and-sops.
Gotherstrom, A., Collins, M. J., Angerbjorn, A. & Lidén, K. Bone preservation and DNA amplification. Archaeometry 44, 395-404 (2002).
Buckley, M. et al. Comparing the survival of osteocalcin and mtDNA in archaeological bone from four European sites. J. Archaeol. Sci. 35, 1756-1764 (2008).
Hird, H. et al. Effect of heat and pressure processing on DNA fragmentation and implications for the detection of meat using a real-time polymerase chain reaction. Food Addit. Contam. 23, 645-650 (2006). (Pubitemid 43878790)
Morrison, L., Ramakrishnan, R., Ruffalo, T. ,Wilber, K. Labeling Fluorescence In Situ Hybridization Probes for Genomic Targets. In Molecular Cytogenetics, Vol. 204. (ed. Y.-S. Fan) 21-40 (Humana Press, 2003).
Prentice, A. I. D. Autofluorescence of bone tissues. J. Clin. Pathol. 20, 717-719 (1967).
Andreeff, M. & Pinkel, D. Introduction to Fluorescence In Situ Hybridization: Principles and Clinical Applications (Wiley, 1999).
Ji, N. & van Oudenaarden, A. Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. WormBook, 1-16 (2012).
van Raamsdonk, L. & van der Voet, H. A ring trial for the detection of animal tissues in feeds in the presence of fish meal. (RIKILT, Institute of Food Safety, 2003).
Veys, P. & Baeten, V. New approach for the quantification of processed animal proteins in feed using lightmicroscopy. Food Addit. Contam. 27, 926-934 (2010).