Keywords :
Cell-Free System/drug effects/secretion; Chemokine CCL2/genetics/metabolism; Chemokines/biosynthesis/genetics/metabolism; Enzyme Activation/genetics; Gene Expression Regulation/drug effects; Humans; Hydrogen Peroxide/pharmacology; Interleukin-8/genetics/metabolism/secretion; Mitogen-Activated Protein Kinases/metabolism; NF-kappa B/metabolism; Oxidative Stress/drug effects/genetics; Promoter Regions, Genetic; Protein Binding/genetics; RNA Processing, Post-Transcriptional/drug effects; RNA, Messenger/biosynthesis/metabolism; Transcription, Genetic/drug effects; Tumor Cells, Cultured; U937 Cells/drug effects/secretion; p38 Mitogen-Activated Protein Kinases
Abstract :
[en] The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2)O(2) gives rise to NF-kappa B nuclear translocation in both lymphocyte (CEM) and monocyte (U937) cells, it leads only to the production of mRNA species encoding interleukin-8 (IL-8) and macrophage inflammatory protein 1 alpha in U937 cells. Under similar conditions these mRNA species are not observed in CEM cells. With the use of a transient transfection assay of U937 cells transfected with reporter constructs of the IL-8 promoter and subsequently treated with H(2)O(2), we show that (1) IL-8-promoter-driven transcription is stimulated in both U937 and CEM cells and (2) the NF-kappa B site is crucial for activation because its deletion abolishes activation by H(2)O(2). The production of IL-8 mRNA in U937 cells is inhibited by the NF-kappa B inhibitors clasto-lactacystin-beta-lactone and E-64D (l-3-trans-ethoxycarbonyloxirane-2-carbonyl-L-leucine-3-methyl amide) but requires protein synthesis de novo. Moreover, inhibition of the p38 mitogen-activated protein kinase also decreases the IL-8 mRNA up-regulation mediated by H(2)O(2). Taken together, these results show the importance of post-transcriptional events controlled by a p38-dependent pathway in the production of IL-8 mRNA in U937. The much lower activation of p38 in CEM cells in response to H(2)O(2) could explain the lack of stabilization of IL-8 mRNA in these cells.
Scopus citations®
without self-citations
32