[en] The aim of the present study was to carry out a numerical comparison of different frictional contact algorithms. Therefore three different contact algorithms (Lemke, penalty and Augmented Lagrangian) have been implemented into two. finite element codes. The correct implementation and behavior of these contact algorithms has been investigated by modeling four different tribological devices. It is shown that all these different methodologies lead to extremely similar results. Besides these four applications have been carefully described and detailed in such a way that the presented tests can be reproduced. The authors wish that they could serve as a benchmark set in order to allow comparison with other finite element software including frictional contact capabilities. (C) 2004 Elsevier B.V. All rights reserved.
Disciplines :
Mechanical engineering
Author, co-author :
Chabrand, Patrick
Dubois, Frédéric
Graillet, Denis
Boman, Romain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Numerical simulation of tribological devices used as a set of benchmarks for comparing contact algorithms
B.D. Carleer, R. ter Haar, H. Huetink, D.J. Schipper, Sheet metal forming simulations with a friction model based on local contact conditions, in: J.K. Lee, G.L. Kinzel, R.H. Wagoner (Eds.), Numisheet'96, The Ohio State University, Dearborn, Michigan, 1996, pp. 40-46.
P. Chabrand, and O. Chertier Variable friction coefficient model in deep drawing T. Atlan Advanced Technology of Plasticity 1996 vol. 2 1996 Colombus Ohio 857 860
P. Chabrand, O. Chertier, Prise en compte du frottement sur les petits rayons: comparaison numérique-expérimental. Loi de frottement à coefficient variable, Tech. rep., Contrat CNRS/Regienov CNRS 119 affectation H5.12.51, 1995.
P. Chabrand, F. Dubois, and J.C. Gelin Modelling drawbeads in sheet metal forming Int. J. Mech. Sci. 38 1 1996 59 77
F. Dubois, Contact, frottement, grandes déformations élastoplastiques, Application à l'emboutissage, Ph.D. Thesis, Université de la Méditerranée, Marseille, 1994.
D. Graillet, Modélisation tridimensionnelle des structure à parois minces pour des problèmes d'impact et de mise en forme, Ph.D. Thesis, University of Liège, Belgium, 2005, in course.
H.D. Nine New drawbead concepts for sheet metal forming J. Appl. Metal Working 2 3 1982 185 192
H.D. Nine The applicability of coulomb's friction law to drawbeads in sheet metal forming J. Appl. Metal Working 2 3 1982 200 210
H.D. Nine Drawbeads forces in sheet metal forming D. Kolstinen N. Wang Mechanics of Sheet Metal Forming 1978 Plenum Press 179 211
P. Chabrand, O. Chertier, and F. Dubois Complementarity methods for multibody friction contact problems in finite deformations Int. J. Numerical Methods Eng. 51 5 2001 553 578
P. Chabrand, F. Dubois, and M. Raous Various numerical methods for solving unilateral contact problems with friction Math. Comp. Modelling 28 4-8 1998 97 108
A. Klarbring, and G. Bjorkman A mathematical programming approach to contact problem with friction and varying contact surface Comp. Struct. 30 1988 1185 1198
E.H. Lee Elastic-plastic deformation at finite strains J. Appl. Mech. 36 1969 1 6
F. Sidoroff Incremental constitutive equation for large strain elastoplasticity Int. J. Eng. Sci. 20 1 1983 19 26
J.C. Simo, and R.L. Taylor Consistent tangent operators for rate independent elastoplasticity Comp. Meth. Appl. Mech. Eng. 48 1985 101 118
J.-P. Ponthot A unified stress update algorithms for the numerical simulation of large deformations elastoplastic and elastoviscoplastic processes Int. J. Plasticity 18 2002 91 126
J.-P. Ponthot, Traitement unifié de la mécanique des milieux continus solides en grandes transformations par la méthode des éléments finis, Ph.D. Thesis, University of Liège, Belgium, 1995.
T. Laursen, Computational Contact and Impact Mechanics, Fundamental of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis, Springer, Berlin, 2002.
T.A. Laursen, Formulation and treatment of frictional contact problems using finite elements, Ph.D. Thesis, Stanford University, 1992.
T.A. Laursen, and J.C. Simo A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems Int. J. Num. Meth. Eng. 36 1994 3451 3485