Zhou X, Tamma KK. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. International Journal for Numerical Methods in Engineering 2004; 59(5):597-668. DOI: 10.1002/nme.873.
Quarteroni A, Sacco R, Saleri F. Numerical Mathematics, Texts in Applied Mathematics. Springer-Verlag New York Inc., 2000.
Ortiz M. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers & Structures 1986; 24(1):167-168. DOI: 10.1016/0045-7949(86)90346-9.
Simo J. The discrete energy-momentum method. conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 1992; 43(5):757-792. DOI: 10.1007/BF00913408.
Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Computer Methods in Applied Mechanics and Engineering 2001; 190: 6783-6824. DOI: 10.1016/S0045-7825(01)00233-X.
Bottasso CL, Borri M. Integrating finite rotations. Computer Methods in Applied Mechanics and Engineering 1998; 164(3-4):307-331. DOI: 10.1016/S0045-7825(98)00031-0.
Krenk S. Energy conservation in Newmark based time integration algorithms. Computer Methods in Applied Mechanics and Engineering 2006; 195(44-47):6110-6124. DOI: 10.1016/j.cma.2005.12.001.
Clough R, Penzien J. Dynamics of Structures. McGraw-Hill Book Co.: Singapore, 1975.
Géradin M, Rixen D. Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley: Chichester, England, 1997.
Hughes TJR, Belytschko T. A Précis of developments in computational methods for transient analysis. Journal of Applied Mechanics-transactions of The Asme 1983; 50: 1033-1041. DOI: 10.1115/1.3167186.
Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover: Mineola, USA, 1987.
Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. Journal of Applied Mechanics-transactions of The Asme 1993; 60: 371-375. DOI: 10.1115/1.2900803.
Wood WL. On the effect of natural damping on the stability of a time-stepping scheme. Communications in Applied Numerical Methods 1987; 3(2):141-144. DOI: 10.1002/cnm.1630030210.
Hulbert GM. Time finite element methods for structural dynamics. International Journal for Numerical Methods in Engineering 1992; 33(2):307-331. DOI: 10.1002/nme.1620330206.
Lens E, Cardona A. An energy preserving/decaying scheme for nonlinearly constrained multibody systems. Multibody System Dynamics 2007; 18(3):435-470. DOI: 10.1007/s11044-007-9049-3.
Krenk S. State-space time integration with energy control and fourth-order accuracy for linear dynamic systems. International Journal for Numerical Methods in Engineering 2006; 65: 595-619. DOI: 10.1002/nme.1449.
Wood WL. Numerical integration of structural dynamics equations including natural damping and periodic forcing terms. International Journal for Numerical Methods in Engineering 1981; 17(2):281-289. DOI: 10.1002/nme.1620170211.
Fung TC. Unconditionally stable higher-order Newmark methods by sub-stepping procedure. Computer Methods in Applied Mechanics and Engineering 1997; 147: 61-84. DOI: 10.1016/S0045-7825(96)01243-1.
Idesman AV. A new high-order accurate continuous Galerkin method for linear elastodynamics problems. Computational Mechanics 2007; 40: 261-279, DOI: 10.1007/S00466-006-0096-Z.
Fung TC. Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 1-first-order equations. International Journal for Numerical Methods in Engineering 1999; 45(8):941-970. DOI: 10.1002/(SICI)1097-0207(19990720)45:8<941::AID-NME612>3.0.CO;2-S.
Bottasso CL, Borri M, Trainelli L. Integration of elastic multibody systems by invariant conserving/dissipating algorithms. II. Numerical schemes and applications. Computer Methods in Applied Mechanics and Engineering 2001; 190: 3701-3733. DOI: 10.1016/S0045-7825(00)00285-1.
Bauchau OA, Bottasso CL, Trainelli L. Robust integration schemes for flexible multibody systems. Computer Methods in Applied Mechanics and Engineering 2003; 192: 395-420. DOI: 10.1016/S0045-7825(02)00519-4.
Bottasso CL, Trainelli L. An attempt at the classification of energy decaying schemes for structural and multibody dynamics. Multibody System Dynamics 2004; 12: 173-185. DOI: 10.1023/B:MUBO.0000044418.23751.fe.
Hespanha J. Linear Systems Theory. Princeton University Press: Princeton, USA, 2009.
Bathe KJ, Noh G. Insight into an implicit time integration scheme for structural dynamics. Computers & Structures 2012; 98-99(0):1-6. DOI: 10.1016/j.compstruc.2012.01.009.
Park KC, Lim SJ, Huh H. A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one-dimensional problems. International Journal for Numerical Methods in Engineering 2012; 91(6):622-643. DOI: 10.1002/nme.4285.
Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics 1977; 5: 283-292. DOI: 10.1002/eqe.4290050306.
Wood WL, Bossak M, Zienkiewicz OC. An alpha modification of Newmark's method. International Journal for Numerical Methods in Engineering 1980; 15(10):1562-1566. DOI: 10.1002/nme.1620151011.
Li XD, Wiberg NE. Structural dynamic analysis by a time-discontinuous Galerkin finite element method. International Journal for Numerical Methods in Engineering 1996; 39: 2131-2152. DOI: 10.1002/(SICI)1097-0207(19960630)39:12<2131::AID-NME947>3.0.CO;2-Z.
Cellier FE, Kofman E. Continuous System Simulation. Springer Science+Business Media, Inc.: New York, USA, 2006.
Wood WL. A unified set of single step algorithms. Part 2: theory. International Journal for Numerical Methods in Engineering 1984; 20(12):2303-2309. DOI: 10.1002/nme.1620201210.
Hulbert GM, Chung J. The unimportance of the spurious root of time integration algorithms for structural dynamics. Communications in Numerical Methods in Engineering 1994; 10: 591-597. DOI: 10.1002/cnm.1640100803.
Romero I. On the stability and convergence of fully discrete solutions in linear elastodynamics. Computer Methods in Applied Mechanics and Engineering 2002; 191: 3857-3882. DOI: 10.1016/S0045-7825(02)00320-1.
Hughes TJR, Hulbert GM. Space-time finite element methods for elastodynamics: formulations and error estimates. Computer Methods in Applied Mechanics and Engineering 1988; 66(3):339-363. DOI: 10.1016/0045-7825(88)90006-0.
Bottasso CL. A new look at finite elements in time: a variational interpretation of Runge-Kutta methods. Applied Numerical Mathematics 1997; 25(4):355-368. DOI: 10.1016/S0168-9274(97)00072-X.
Borri M, Bottasso CL, Trainelli L. An invariant-preserving approach to robust finite-element multibody simulation. Zeitschrift für Angewandte Mathematik und Mechanik 2003; 83: 663-676. DOI: 10.1002/zamm.200310065.
Guttman L. Enlargement methods for computing the inverse matrix. The Annals of Mathematical Statistics 1946; 17: 336-343. DOI: 10.1214/aoms/1177730946.