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SUMMARY

This paper proposes an energy-based measure for the evaluation of the local truncation error of

two-level one-step integration schemes. The measure is applicable to multiple degree of freedom

systems and, as such, does not necessarily require the reduction of the problem to the dynamics

of a single mode by the invocation of orthogonality arguments; for a consistent treatment of

the problem, it naturally handles the structural damping and external forcing terms which are

generally and mistakenly neglected in error analyses; and it segregates the error associated with

the free and forced response components of the problem. To illustrate the approach, two examples

associated with the application of the trapezoidal scheme and of a high-order scheme proposed

in the literature are analyzed. The latter example reveals the shortcomings of the standard

approach that is based on the undamped/unforced linear oscillator and therefore highlights the

need for the proposed framework. In this example, the scheme order of accuracy is, indeed, below

expectation when applied to an oscillator subject to structural damping or external forcing, in

the numerically dissipative setting.

A reformulation of the deficient scheme, enabling the recovery of its high-order accuracy, is

proposed. It is obtained by demonstrating its equivalence to a four-level one-step scheme related

to the time discontinuous Galerkin (TDG) method. Steps for providing the corrective terms

include (i) the presentation and analysis of three four-level schemes related to the TDG method

for application in linear structural dynamics and (ii) the recasting in two-level form of one of

these schemes by elimination of the internal variables via static condensation.
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2 A. DEPOUHON ET AL.

1. INTRODUCTION

As per Hilber and Hughes [1], competitive time integration schemes devoted to structural

dynamics should verify the following list of attributes:

1. Unconditional stability when applied to linear problems.

2. No more than one set of implicit equations should have to be solved at each step.

3. Second-order accuracy, at least.

4. Controllable algorithmic dissipation in the higher modes.

5. Self-starting.

On the one hand, some of these points can be fulfilled a priori by choices at the development

or selection stage of the time integration procedure, notably of the principle underlying the

discretization of the equations of motion. For instance, item 1. precludes explicit algorithms

that are only conditionally stable [2]; item 5. rules out the use of linear multistep solvers for

time integration in structural dynamics; the use of the generalized framework for one-step

three-level schemes (the number of levels is defined as the ratio between the state-vector

dimension and the number of degrees of freedom in the problem [3]) proposed by Zhou

and Tamma [4] enables the translation of these criteria into constraints on the generalized

scheme parameter sets and, thus, their verification at the design level. On the other hand,

the stability and accuracy properties of integration schemes, items 1. and 3., are typically

evaluated at a subsequent stage of the development of an integration procedure. The

importance of their correct assessment stems from two purposes: (i) the establishment of the

procedure convergence that is guaranteed by its consistency and stability (Lax-Richtmyer

equivalence theorem [5]), and (ii) the selection criteria for choosing an integration scheme

for a specific application partly rely on these properties.

The commonly adopted criterion for stability is that the numerical solution should remain

uniformly bounded over all computed time points [3]. Although not fully equivalent in

the nonlinear context [6], this measure is usually superseded by the natural notion of

algorithmic stability related to the conservation or decay of the system mechanical energy

along the computed system trajectory [7]. Verification of the non-increasing character of the

system mechanical energy (and possibly that of other relevant physical quantities such as

momentum) has served as a design basis for problem-specific algorithms, e.g., the second-

order accurate energy-dissipative momentum-conserving (EDMC-2) scheme proposed by

Armero and Romero [8] for nonlinear elastodynamics or the unconditionally stable scheme

of Bottasso and Borri [9] dedicated to the handling of flexible beams undergoing finite

placement. Similar energy arguments can be developed in the linear context, in which

energy boundedness does guarantee that of the solution. They are considerably simpler

though; see, for instance, the energy-based stability analysis of Newmark-related integration

schemes in [10]. Further simplification even follows if, in addition, the equations of motion

can be uncoupled through modal expansion [11, 12]. The problem can then be essentially

reduced to a single degree of freedom oscillator and the stability of the integration scheme

assessed from the spectral properties of the associated amplification matrix [3, 13, 14, 15];

the integration scheme is stable provided the amplification matrix has eigenvalues within

the unit circle, with at most one eigenvalue with unit modulus.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)

Prepared using nmeauth.cls DOI: 10.1002/nme



ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 3

In view of the simplicity of the spectral analysis on the single degree of freedom model,

relative to energy-based arguments, the scalar oscillator, representative of a single mode

dynamics, has become, de facto, the model linear problem for the assessment of a scheme

accuracy. Moreover, as the stability analysis is concerned with internal stability and as the

undamped oscillator is often mistakenly assumed to be the worst-case scenario in regards to

stability bounds [16], structural damping and external forcing are usually not accounted for

in assessing the order of accuracy of an integration scheme; see for instance these analyses

of one-step schemes that rest on the scalar undamped/unforced oscillator [8, 13, 17, 18, 19].

To ensure the consistency of the analysis with respect to the operational usage of the

integration procedure, the local truncation error should, however, be evaluated on the basis

of the damped/forced problem, as recommended by Wood [20] who provides a framework

for the analysis of displacement-based multistep schemes. While some authors do account

for structural damping in their local truncation error analysis [12, 15, 21, 22], very few do

so for the external forcing, as noted by Fung [23]. This might provide a wrong picture of

the LTE of these algorithms.

To streamline the consistent assessment of the order of accuracy of one-step integration

schemes for linear dynamics—this paper does not deal with overshooting issues that

commonly arise with schemes that preserve an algorithmic quantity rather than the

mechanical energy, e.g., Newmark-based schemes [10]—we present a novel framework for

the evaluation of the local truncation error of two-level schemes. The proposed framework

relies on the evaluation of two error norms relative to the free (homogeneous) and forced

(particular) response components. These error norms are proportional to the local truncation

error and provide an efficient way of evaluating the scheme order of accuracy with respect to

the free and forced response components. The actual scheme order of accuracy, in operating

conditions, then appears to be the minimum of the two values. Also, the influence of

structural damping is naturally accounted for in the error analysis, making it a complete

assessment of the scheme accuracy. Contrary to Wood’s framework [20], ours is directly

applicable to two-level one-step schemes; it does not require their recasting into an equivalent

displacement-based multistep form, which makes the analysis simpler, not only analytically

but also numerically.

To illustrate the analysis appoach, two examples are considered. First, the method

recovers the second-order accuracy of the trapezoidal scheme when applied to the linear

damped and forced oscillator using an analytical application of the framework; constant

and sinusoidal loadings are considered. Second, we demonstrate the possible shortcomings

of the traditional approach that considers the undamped/unforced problem as reference by

the numerical application of our framework to the high-order scheme proposed by Krenk [19].

The thorough analysis conducted by the author on the undamped/unforced linear oscillator

predicts that the scheme achieves fourth-order and third-order accurate integration in the

numerically conservative and dissipative settings, respectively. These results are confirmed

for that specific oscillator configuration. However, they are invalidated when the scheme is

used in its numerically dissipative setting, in the presence of structural damping or external

forcing.
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4 A. DEPOUHON ET AL.

With the aim of correcting the formulation of the latter high-order scheme, the paper

proposes two additional contributions. First, we introduce the linear time discontinuous

Galerkin (TDG) method and two four-level one-step schemes that relate to the TDG

method when applied to linear problems, although they were developed independently for

specific nonlinear problems, see [8, 24, 25]. Our presentation extends that of Bottasso and

Trainelli [26] to the case of damped and forced linear structural systems. Second, we prove

the equivalence between one of the TDG-like schemes and the one proposed by Krenk [19],

in the undamped/unforced case. Then, extending the equivalence to other configurations of

the model oscillator, the corrections necessary for the recovery of its high-order accuracy

are identified.

The paper is organized as follows. Section 2 introduces the framework for the accuracy

analysis and develops the two example applications. Presentation of the TDG-like schemes

comes in Section 3, followed by the establishment of the equivalence with Krenk’s scheme and

the identification of the corrective terms required for the recovery of the scheme accuracy

in the numerically dissipative setting, in the presence of structural damping or external

forcing, in Section 4. The paper then closes with a summary of the results.

2. CALCULATION OF THE LOCAL TRUNCATION ERROR

Let us consider the model problem of linear structural dynamics under state-space formu̇

v̇

 =

 0 I

−M−1K −M−1C


u

v

+

0

a

 , (1)

or

ẋ = Fx + g (2)

in shorthand notation. Vectors u(t),v(t),a(t) := M−1f(t) refer to the displacement and

velocity fields, and the external acceleration resulting from the forcing f(t), respectively;

column vector x = [u ; v] denotes the state vector. The overhead dot denotes differentiation

with respect to time ẋ = dx/dt. The mass matrix is assumed symmetric positive definite,

M = MT ,M > 0, while the damping and stiffness matrices are assumed symmetric positive

semi-definite, Z = ZT ,Z ≥ 0,Z ∈ {C,K}. This guarantees the negative semi-definiteness of

matrix F and the system internal stability, i.e., the system state remains bounded as time

goes to infinity. Such assumptions are usually verified when the governing matrices arise

from a space semi-discretization using the finite element method.

From the theory of linear time-invariant (LTI) systems, the analytical solution to (2),

x(t), is known as [27]

x(t) = eF(t−t0)x(t0) +

ˆ t

t0

eF(t−τ)g(τ)dτ. (3)
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ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 5

It is the sum of the homogeneous and particular responses of the dynamical system,

respectively related to the state-transition matrix eF(t−t0) and to the continuous-time

convolution (integral) product between the system impulse response and the input vector

g := [0 ; a].

An alternative solution relies on discretizing the underlying governing problem via, among

others, finite elements [17, 22] or finite differences [28, 29] and approximating the continuous

integration by a step-by-step update scheme. The evolution equation resulting from the

application of one-step schemes to equation (2) can be cast in the generic form

H0xn+1 = H1xn + `n+1
n , (4)

where H0,H1 are the iteration matrices and `n+1
n is the load vector that accounts for the

external loading over the time interval t ∈ [tn, tn+1]. Additionally to the displacement and

velocity variables, the state vector xn := x(tn) may contain higher-order field variables,

e.g., the acceleration in schemes of the α-family [15, 30, 31], or internal variables in schemes

related to the time discontinuous Galerkin method [17, 32]. The ratio between the dimension

of the state vector and the number of degrees of freedom of the system defines the number

of levels m of the scheme. The iteration matrices and the load vector are entirely defined

by the integration scheme. They generally depend on the governing matrices (M,C,K), the

timestep (h), the external nodal loads (a) and, possibly, on algorithmic parameters related

to the scheme.

Upon solving for the state vector at the end of the timestep, xn+1, the update equation (4)

takes the explicit form

xn+1 = Axn + bn+1
n , (5)

with amplification matrix A := H−1
0 H1 and direct load vector bn+1

n := H0
−1`n+1

n . It is the

spectral and asymptotic characteristics of these update components that define the scheme

stability conditions and order of accuracy [14].

2.1. Spectral analysis

The conventional steps of a spectral analysis are:

(i) The reduction of the multiple degree of freedom problem (1) to a single degree of

freedom problem by invoking eigenmode orthogonality whenever the damping matrix

shares the eigenvectors of the mass and stiffness matrices [11, 12]. The governing

matrices become scalar variables. The problem is usually normalized to have unit

mass

M← 1, C← 2ζω0, K← ω2
0 , a← a. (6)

(ii) The single degree of freedom model is considered in its undamped/unforced version

ζ ← 0, a← 0. (7)

(iii) The one-step scheme is applied to the model problem to form the m×m amplification

matrix.
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6 A. DEPOUHON ET AL.

(iv) The eigenvalues of the amplification matrix are computed. Stability conditions are

established on the basis of their location in the complex plane.

(v) The scheme order of accuracy with respect to the timestep h is calculated from its local

truncation error (LTE). The numerical damping and the relative period elongation

(numerical dispersion) introduced by the scheme are reported as a function of the

reduced eigenfrequency Ω0 := ω0h. Convergence of the scheme is then ensured provided

it is stable and has a strictly positive order of accuracy, in virtue of the Lax-Richtmyer

theorem [5].

Additional details and considerations about steps (iv), (v) can be found in the books [5, 12,

14, 33] and papers [13, 19, 21, 22], among others texts.

However, as was already noted by Wood [34], the presence of natural damping in the

equation of motion of the oscillator, may influence the order of accuracy and the stability

conditions of an integration scheme. Furthermore, it is of general interest to engineers to

compute the response of structures to external dynamic loads. As such, accuracy properties

of integration schemes should be evaluated in the presence of a forcing term as well.

To that end, Wood [20] proposes a framework for the analysis of linear multistep methods

as applied to the damped scalar oscillator under harmonic forcing; that is, above step (ii) is

replaced by ζ ← ζ∗ > 0, f ← eipt, i =
√
−1. As the framework is directed towards the analysis

of displacement-based multistep schemes, it is not directly applicable to one-step schemes

that rely on evolution equations involving displacement and velocity variables. Reduction of

multi-level one-step schemes to their equivalent multistep form is thus required prior to the

application of Wood’s framework, a manipulation that can prove cumbersome, especially for

high-order schemes involving internal variables. This and the lack, to the authors’ knowledge,

of a proper framework for the analysis of the local truncation error in one-step integration

schemes prompt for the method we propose in the next section.

2.2. Proposed framework for the local truncation error analysis

There is no possible discussion about the analysis of the internal stability of equation (5).

Its homogeneous response is given by

xn = Anx0 (8)

and remains bounded provided the spectral radius of the amplification matrix is bounded

by 1 and that eigenvalues with unit modulus have unit multiplicity at most. However, when it

comes to the evaluation of the scheme accuracy, analyses based on the sole eigenvalues of the

amplification matrix are debatable. They indeed discard spurious eigenvalues and assume

the motion or state vector to be parallel to the eigenvector of the principal eigenvalue of the

amplification matrix, an assumption that is not always met in practice; see for instance [35],

where this issue is addressed for the generalized-α method. Also, if the analysis neglects the

forced response of the system, inconsistencies in the formation of load vector `n+1
n can go

unnoticed and the scheme could suffer a loss of accuracy due to the improper handling of

forcing terms; this issue is examined later on.
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ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 7

Let us now define the energy-based error measure

e(t) :=

√
2

2

∥∥∥Γ1/2ex(t)
∥∥∥

2
, (9)

with the symmetric positive semi-definite (in virtue of the assumptions on the mass and

stiffness matrices) block diagonal scaling matrix Γ := diag(K,M) and the error vector on the

displacement and velocity fields ex(t) = [u(t)− u(t) ; v(t)− v(t)]; the underlined variables

refer to the analytical solution (3), the regular notation to the numerical solution. This norm

has been introduced by Romero [36] as the natural measure to quantify the errors arising

from the numerical computation of the motion of mechanical systems. It can be interpreted

as the mechanical energy associated with the errors on the displacement and velocity fields.

Considering the error generated by a single increment of the integration procedure from

initial time 0 (without loss of generality), i.e., x0 = x0 = x(0), the error measure can be

specialized to

e(h) =

√
2

2

∥∥∥∥∥Γ1/2

((
A− eFh

)
x0 + b1

0 −
ˆ h

0

eF(h−τ)g(τ) dτ

)∥∥∥∥∥
2

,

≤
√

2

2

∥∥∥Γ1/2
(
A− eFh

)
x0

∥∥∥
2

+

√
2

2

∥∥∥∥∥Γ1/2

(
b1

0 −
ˆ h

0

eF(h−τ)g(τ) dτ

)∥∥∥∥∥
2

, (10)

by use of the expressions for the numerical and analytical solutions, and of the triangle

inequality.

Thus, the total numerical error arising from a single timestep can be decomposed into two

components, relative to the free and forced responses of the system. The first component

is evidently proportional to the initial energy of the system E0 := ‖Γ1/2x0‖2/2. Further

hypothesizing the positive definiteness of the scaling matrix Γ, a condition that follows

from the assumption of positive definiteness of the stiffness matrix K > 0, we free ourselves

from this dependency by maximizing it over all initial conditions with unit energy E0 = 1.

This yields

e1(h) :=
∥∥∥Γ1/2

(
A− eFh

)
Γ−1/2

∥∥∥
2
, (11)

by definition of the matrix 2-norm (maximum singular value) [5, Theorem 1.2]. As to the

second component, it is defined as

e2(h) :=

√
2

2

∥∥∥∥∥Γ1/2

(
b1

0 −
ˆ h

0

eF(h−τ)g(τ) dτ

)∥∥∥∥∥
2

(12)

and is problem specific through the definition of the external loading g(t).

Error components e1(h), e2(h) are easily identified as being proportional to the local

truncation error as defined by Hughes [14] and to the timestep h. The leading-order terms of

their Taylor expansion around h = 0 therefore directly yields the scheme orders of accuracy

k1, k2 as regards the free and forced computed responses

e1(h) ∼ C1h
k1+1, e2(h) ∼ C2h

k2+1. (13)
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8 A. DEPOUHON ET AL.

Given the additive nature of the errors, the overall order of accuracy of the scheme k is

given by

k := min{k1, k2}. (14)

Constants C1, C2 depend on the model parameters and, possibly, on the algorithmic

parameters related to the integration scheme. They merely follow from the limiting behavior

of e1(h), e2(h) when the timestep tends to 0

C1 = lim
h→0

e1(h)

hk1+1
, C2 = lim

h→0

e2(h)

hk2+1
. (15)

Under the assumptions of well-definiteness of the governing matrices, the above

developments do apply to linear structural dynamics as a whole, not only to models for

which modal expansion applies. Tractability matters, nonetheless, encourage the use of a

single degree of freedom model whenever possible. In that context, analytical developments

remain accessible. In particular, the treatment of loadings of polynomial or periodic nature

can be conducted analytically; it is developed in the next section. However, parallel to

the analytical route, the numerical one remains the fastest and most versatile one, as all

configurations can be treated; the convolution product will then be computed using adaptive

quadrature with stringent tolerances to reach error levels close to machine epsilon. A linear

regression of the error components versus the timestep, after logarithmic transformation,

provides approximations to k1, k2, C1, C2.

2.3. Matrix exponential and convolution products for the analytical calculation of e1, e2

The evaluation of the error norms e1(h), e2(h) involves that of the state-transition matrix

eFt of LTI system (2) and the calculation of the convolution product associated with the

forced response of the system. While the expression of the state-transition matrix merely

follows from its definition, the calculation of the convolution product can prove an arduous

task for loadings having complex time evolutions. Nevertheless, it remains tractable for two

main classes of time evolutions: (i) polynomial loadings (or loadings that can be expanded

in power series) and (ii) periodic loadings. These developments are now proposed on the

basis of the scalar model u̇
v̇

 =

 0 1

−ω2
0 −2ζω0


u
v

+

0

a

 . (16)

The matrix exponential

The state-transition matrix (matrix exponential) is easily computed by spectral

decomposition, yielding

eFt = e−ζω0t

 cosωdt+ ζ√
1−ζ2

sinωdt
1
ωd

sinωdt

− ω0√
1−ζ2

sinωdt cosωdt− ζ√
1−ζ2

sinωdt

 , (17)
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ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 9

with ωd := ω0

√
1− ζ2 (subcritical damping is assumed, i.e., ζ ∈ [0, 1]). This expression

enters the definition of both e1(h), e2(h).

The convolution product

The model problem being LTI, the superposition principle applies to the calculation of the

forced response. Accordingly, if the time variation of the loading term can be expressed as

a partial sum of basis functions ϕn(t),

a(t) =
∑
n∈N

µnϕn(t), (18)

the linearity of the integration operator underlying the convolution product can be exploited

to calculate it, i.e.,

a(t) ∗ g(t) =
∑
n∈N

µn(ϕn(t) ∗ g(t)), (19)

where the star operator denotes continuous-time convolution.

Also, given the trigonometric nature of the state-transition matrix entries, the specific

form of the loading vector g(t) = [0 ; a(t)], and recalling that sine and cosine functions can

be expressed as linear combinations of complex exponentials, namely

sinωdt =
1

2i

(
eiωdt − e−iωdt

)
, cosωdt =

1

2

(
eiωdt + e−iωdt

)
, (20)

the calculation of the convolution product essentially boils down to finding an analytical

expression for

H± [ϕn(t)] =

ˆ h

0

e(−ζω0±iωd)(h−τ)ϕn(τ) dτ. (21)

More specifically, if we denote by (A)ij the ith-row jth-column entry of matrix A, the two

entries of the convolution product read

ˆ h

0

(
eF(h−τ)

)
12
ϕn(τ) dτ =

1

2iωd

(
H+ [ϕn(t)]−H− [ϕn(t)]

)
, (22)

ˆ h

0

(
eF(h−τ)

)
22
ϕn(τ) dτ =

−ζ + i
√

1− ζ2

2i
√

1− ζ2
H+ [ϕn(t)] +

ζ + i
√

1− ζ2

2i
√

1− ζ2
H− [ϕn(t)] .(23)

Assuming the external load to be real, entries H±[ϕn(t)] are complex conjugate and the

above expressions further simplify into

ˆ h

0

(
eF(h−τ)

)
12
ϕn(τ) dτ =

1

ωd
H+

Im[ϕn], (24)

ˆ h

0

(
eF(h−τ)

)
22
ϕn(τ) dτ = H+

Re[ϕn]− ζ√
1− ζ2

H+
Im[ϕn], (25)

where H+
Re[ϕn(t)], H+

Im[ϕn(t)] denote the real and imaginary parts of H+[ϕn(t)], respectively.
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10 A. DEPOUHON ET AL.

In the case of polynomial loadings or smooth functions that can be expanded in power

series (N = +∞), the basis functions are the powers of the time variable, ϕn(t) = tn, and

a(t) =

N∑
n=0

µnt
n. (26)

Defining the incomplete gamma function

γ(n+ 1, x) =

ˆ x

0

tne−tdt, (27)

it is straightforward to establish that

H± [tn] =

ˆ h

0

e(−ζω0±iωd)(h−τ)τndτ = γ (n+ 1,−ζΩ0 ± iΩd)
e−ζΩ0±iΩd

(−ζω0 ± iωd)
n+1 , (28)

where Ω0 := ω0h,Ωd := ωdh. Substitution in equations (22)-(23) then provides the

expressions of the convolution product.

In the case of a periodic loading with period T , the time variation of the forcing term can

be expressed as a Fourier sum

a(t) =

N∑
n=−N

µneiωnt, (29)

with

ωn =
2πn

T
, µn =

1

T

ˆ T/2

−T/2
f(t)e−iωnt dt. (30)

Thus, ϕn(t) = eiωnt. The convolution product is then obtained from (22)-(23) using the

following result

H±
[
eiωt
]

=

ˆ h

0

e(−ζω0±iωd)(h−τ)eiωτdτ =
eiΩ − e−ζΩ0±iΩd

i(ω ∓ ωd) + ζω0
, (31)

with Ω := ωh. Note that the above results are not valid when, in the absence of natural

damping (ζ = 0), the oscillator is excited at its resonance frequency, as this translates into

the unboundedness of H±
[
eiωt
]
.

2.4. Application examples

To illustrate the proposed framework, we evaluate the accuracy of two integration schemes

for structural dynamics. Analytical developments are conducted for the well-known second-

order trapezoidal scheme. A numerical approach is followed instead in assessing the accuracy

of the high-order scheme proposed by Krenk [19].

Trapezoidal scheme

The trapezoidal scheme follows from the integration of equations of motion (1) under the

assumption of linear time evolution of the displacement and velocity fields. It results in the
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ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 11

approximation h
2 K M + h

2 C

I −h2 I


 un+1

vn+1

 =

 −h2 K M− h
2 C

I h
2 I


 un

vn

+

 h
2 (fn + fn+1)

0

,
(32)

which is known to be second-order accurate, unconditionally stable and numerically

conservative, as the eigenvalues of the amplification matrix are complex conjugate with

unit magnitude for all frequencies. Reduction to the damped/forced scalar oscillator leads

to the following amplification matrix and direct load vector

A =
1

D

 4 + 4ζΩ0 − Ω2
0 4h

−4Ω0ω0 4− 4ζΩ0 − Ω2
0

 , b1
0 =

1

D

h2

2h

 (an + an+1), (33)

with denominator D = 4 + 4ζΩ0 + Ω2
0, Ω0 := ω0h and state vector xn = [un ; vn].

Completing all algebra, the Maclaurin expansion of e1(h) reads

e1(h) =
ω3

0h
3

12

√
η +

√
η2 − 1 +O(h4), η(ζ) = 1 + 2ζ2 − 16ζ4 + 32ζ6. (34)

Thus, k1 = 2 and C1 = ω3
0

√
η +

√
η2 − 1/12.

The error on the forced response is dependent on the type of loading. As example

results, we provide the error for constant (a(t) = a0) and sinusoidal (a(t) = a0 sinωt, ω 6= ω0)

loadings, assuming zero phase for simplicity. They respectively read

e2(h) =

√
1− 4ζ2 + 16ζ4

12
√

2
a0ω

2
0h

3 +O(h4), (35)

e2(h) =

√
1 + 4ζ2

12
√

2
a0ω0ωh

3 +O(h4), (36)

by application of equations (18), (22)-(23), (28), (31). Accordingly, for both loading

types, we have k2 = 2 and the leading-order constants are identified as C2 =

(a0ω
2
0

√
1− 4ζ2 + 16ζ4)/(12

√
2) and C2 = (a0ω0ω

√
1 + 4ζ2)/(12

√
2), respectively.

As k = min{k1, k2} = 2, the trapezoidal scheme is confirmed to achieve second-order

accuracy on linear problems. The order of accuracy is independent of the presence of

damping (leading-order constants do not vanish when ζ = 0) or external forcing (k1 = k2),

the latter case having been verified for constant and sinusoidal loads.
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Figure 1. Scaled error dependency on the timestep using Krenk’s scheme on the scalar model
problem with sinusoidal excitation (a(t) = sinωt) and model parameters (ω0, ω) = (1, 2). Line
slopes represent the orders of accuracy k1, k2. The scheme is fourth-order accurate in the
numerically conservative setting (ρ∞ = 1.0) when high-order integration is used to evaluate the
average forcing term; it is third-order accurate in case low-order integration is exploited. In the
numerically dissipative setting (ρ∞ < 1.0), the scheme order of accuracy drops to two and one in

the absence (ζ = 0.0) and presence (ζ = 0.1 > 0) of structural damping, respectively.

Krenk’s scheme [19]

On the basis of the integration by parts of equation (1), Krenk has proposed the following

two-level one-step integration scheme C +
(

1
2 + χ

)
hK M−

(
1
12 + 1

2χ
)
h2K

M−
(

1
12 + 1

2χ
)
h2K −

(
1
2 + χ

)
hM− 1

12h
2C


 un+1

vn+1


=

 C−
(

1
2 − χ

)
hK M−

(
1
12 −

1
2χ
)
h2K

M−
(

1
12 −

1
2χ
)
h2K

(
1
2 − χ

)
hM− 1

12h
2C


 un

vn

+

 1
2hf̄

− 1
12h

2∆f


(37)

to march it in time with timestep h and forcing terms f̄ := (1/h)
´ tn+1

tn
f(t) dt, ∆f :=

fn+1 − fn. The algorithmic parameter χ ∈ [0, 1/6] is related to the scheme spectral radius at

infinite frequency via

χ =
1− ρ∞

6 (1 + ρ∞)
←→ ρ∞ =

1− 6χ

1 + 6χ
, (38)

and therefore controls the numerical dissipation introduced by the integration scheme. The

scheme is energy conservative when χ = 0 and dissipative for χ > 0. Its detailed analysis,

on the basis of the scalar model oscillator in its undamped/unforced form, can be found in

the original paper [19].

Figure 1 shows the dependency of scaled errors e1/h, e2/h on the timestep for several

configurations of the scalar model oscillator, under zero-phase non-resonant sinusoidal

excitation, a(t) = sinωt, ω 6= ω0. Because analytical developments are too tedious in this

case, they have been obtained numerically from application of equations (11), (12) to

the scheme defined in equation (37). Log-log scaling has been used for the plotting of
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ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 13

the numerical results. In particular, the influences of the structural (ζ ∈ {0.0, 0.1}) and

numerical (ρ∞ ∈ {0.5, 1.0}) dampings are shown, as well as that of the accuracy with

which the average forcing term f̄ is approximated. For the latter point, the trapezoidal

average value, f̄ ' (fn + fn+1)/2, and the Simpson-Cavalieri approximation [5, p. 377],

f̄ ' (fn + 4fn+1/2 + fn+1)/6, where fn+1/2 := f(tn + h/2) have been used; these, respectively,

provide second-order and fourth-order approximations to the integral. The results are further

synthesized in Table I. They give rise to two main comments.

− Although the derivation of the scheme is partially based on the assumption of linear

time variation of the displacement, velocity and external forcing fields [19, p. 599], that

assumption should not be propagated in the evaluation of the average forcing term

entering it. Indeed, in the conservative setting (ρ∞ = 1), the overall scheme order of

accuracy drops by 1, from k = 4 to k = 3, when the integral definition of the average

forcing is evaluated with second-order accuracy rather than fourth-order.

− In the dissipative setting (ρ∞ < 1), the scheme is second-order (k1 = 3, k2 = 2) and

first-order (k1 = 1, k2 = 2) accurate in the absence (ζ = 0) and presence (ζ > 0) of

structural damping, respectively. The limited accuracy can be associated with a loss

of accuracy of both the forced and homogeneous responses, with the latter being

observed in the presence of structural damping only. These observations indicate that

(i) the matrices H0,H1 should include terms coupling the structural and numerical

dampings, i.e., terms proportional to χC, and (ii) the load vector `n+1
n should also

have a dependency on the numerical damping through parameter χ.

While the first comment clarifies the text of Krenk in regards to the evaluation of

the average forcing term, the latter is another clear evidence that the LTE order of the

undamped/unforced system should not be extrapolated to more general cases, without any

careful study. Indeed, high-order accuracy is not achieved by the scheme, as is, in the

presence of structural damping or external forcing, in the numerically dissipative setting.

This example highlights the need for a consistent procedure to evaluate the local

truncation error of time integration schemes that includes natural dissipation and forcing

in the linear model problem, a recommendation already formulated some 30 years ago

by Wood [20]. Recovery of the expected accuracy for this scheme is nevertheless possible

through ad hoc modifications to the scheme. These are presented in the next sections.

3. A FAMILY OF FOUR-LEVEL ONE-STEP SCHEMES

In their review paper [26], Bottasso and Trainelli make a parallel between three integration

schemes, namely the linear time discontinuous Galerkin method (TDG) [17, 32], the

dissipative midpoint scheme (ArRo) proposed by Armero and Romero [8] and the

parametrized TDG-like scheme (BoTr) introduced by Bottasso and Trainelli [26]. Their

introduction and analysis considers the undamped/unforced scalar model problem. We
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14 A. DEPOUHON ET AL.

Table I. Summary of the accuracy levels observed for Krenk’s scheme, using the proposed
framework. The scheme expected order of accuracy, as per [19], is only observed in the numerically
conservative setting (ρ∞ = 1) with high-order evaluation of the average forcing term. Lower

accuracy orders are observed in other configurations.

f̄ accuracy 2nd order 4th order

ζ = 0 ζ > 0 ζ = 0 ζ > 0

ρ∞ = 1 k1 = 4 k1 = 4 k1 = 4 k1 = 4

k2 = 3 k2 = 3 k2 = 4 k2 = 4

min(k1, k2) k = 3 k = 3 k = 4 k = 4

ρ∞ < 1 k1 = 3 k1 = 1 k1 = 3 k1 = 1

k2 = 2 k2 = 2 k2 = 2 k2 = 2

min(k1, k2) k = 2 k = 1 k = 2 k = 1

extend their comparison in the present section, on the basis of the equation of structural

dynamics (1); that is, including structural damping and external forcing for the multiple

degrees of freedom model.

3.1. Linear Time Discontinuous Galerkin scheme – TDG

The spirit of discontinuous Galerkin (DG) methods is to allow jump discontinuities of the

state variables at element connexions (be they in space or in time) by considering a left

and a right values at each node. The link between the two values is established by weak

enforcement of element boundary conditions in the DG weak form. The jump discontinuity

at mesh nodes usually results in numerical stabilization via energy dissipation.

Let us define the average value over the timestep x̄ := 1
2 (xn+1 + xn), the field variation

over the timestep ∆x := xn+1 − xn, the right time limit xn+ := lim
ε→0+

x(tn + ε) = x(t+n ) and

the jump discontinuity at a given time instant JxnK := xn+ − xn. In residual form, the 2-field

weak form relative to the TDG method reads

Rn ≡
ˆ tn+1

tn

w1h · (Mv̇h + Cvh + Kuh − f) dt+

ˆ tn+1

tn

w2h · (u̇h − vh) dt

+ w1h

(
t+n
)
·MJvh (tn)K + w2h

(
t+n
)
· Juh (tn)K = 0.

(39)

The subscript h is used to emphasize the finite dimensionality of the fields. Choosing the

test functions w1h(t),w2h(t) and unknown fields uh(t),vh(t) to be linear polynomials of type

x(t) =
tn+1 − t

h
xn+ +

t− tn
h

xn+1 (40)
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ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 15

with unknown nodal values at t+n and tn+1, the following update scheme is obtained [17, 32]

1
2I 1

2I −h3 I −h6 I

− 1
2I 1

2I −h6 I −h3 I

h
3 K h

6 K 1
2M + h

3 C 1
2M + h

6 C

h
6 K h

3 K − 1
2M + h

6 C 1
2M + h

3 C





un+

un+1

vn+

vn+1


=



un

0

F1 + Mvn

F2


. (41)

Forcing terms F1 and F2 are related to the integrated action of the external loads by

F1 =

ˆ tn+1

tn

tn+1 − t
h

f(t) dt, F2 =

ˆ tn+1

tn

t− tn
h

f(t) dt. (42)

Upon linearly combining the rows of block matrix equation (41), the TDG scheme can be

rearranged as follows

1
2K 1

hM + 1
2C 1

2K 1
2C

I −h2 I 0 −h2 I

0 h
6 I I −h6 I

− 1
6K − 1

6C 1
6K 1

hM + 1
6C





un+1

vn+1

un+

vn+



=



0 1
hM

I 0

I 0

0 1
hM


 un

vn

+



1
hI1

0

0

2
h2

(
tn+1/2I1 − I2

)


.

(43)

Time tn+1/2 := 1
2 (tn+1 + tn) corresponds to the midstep time. The first row of block matrix

equation (43) is related to the equation of motion, the second to the velocity update, the

third and four to the update of the internal variables un+ ,vn+ , respectively. Integral actions

I1 and I2 now replace F1 and F2. They are defined as follows

I1 =

ˆ tn+1

tn

f(t) dt, I2 =

ˆ tn+1

tn

tf(t) dt, (44)

and can be interpreted as time-force moments. Indeed, action I1 defines the force impulse

over the timestep and is proportional to the average force over that step, and the combination(
tn+1/2I1 − I2

)
is nothing else than the opposite of the first-order centered moment over

the timestep. These moments capture the time variation of the external loading over the

timestep. They are necessary for the scheme to achieve high-order accuracy.

As was illustrated in Section 2.4, the use of low order quadrature for the evaluation of

integral terms can result in a decrease of the overall scheme order of accuracy through a loss
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16 A. DEPOUHON ET AL.

of accuracy on the forced response. For the TDG scheme to achieve third-order accuracy

on linear problems, integral terms I1, I2 should be evaluated analytically or with high order

numerical quadrature. In that respect, all formulas achieving third degree exactness provide

the sufficient accuracy, e.g., Simpson-Cavalieri, 2-point Gauss-Legendre, cubic Hermite

interpolants.

In addition to its high accuracy, the TDG scheme has zero spectral radius at infinite

frequency ρ∞ = 0 (spectral annihilation); high frequency oscillations are nearly reduced to

zero in one timestep. Figure 2 (α = 1/6) shows the evolution of the spectral radius of the

TDG scheme amplification matrix.

To establish the variation of the mechanical energy (∆E) over a timestep, i.e., the

sum of the variations of the kinetic (∆T ) and potential (∆V ) energies over a timestep

∆E := ∆T + ∆V , we form the scalar products of the equation of motion with ∆u and of

the velocity update with M∆v, and add them

∆E =
1

h
∆u · I1 −

1

h
∆u ·C∆u− 1

2
∆v ·MJvnK−

1

2
∆u ·KJunK. (45)

Noting that ∆x = xn+1 − xn+ + JxnK and exploiting the update equations for the internal

state variables, the variation of energy can be brought to the following form

∆E =
1

h
∆u · I1 +

6

h2
JunK ·

(
tn+1/2I1 − I2

)
work of external forces

− 1

h
∆u ·C∆u

viscous
dissipation

− (DK +DC +DM ) ,

numerical
dissipation

(46)

with

DK :=
1

2
JunK ·KJunK, DC :=

6

2h
JunK ·CJunK, DM :=

1

2
JvnK ·MJvnK. (47)

It readily appears that jump discontinuities are responsible for numerical damping through

energy dissipation, since the stiffness and damping matrices are positive semi-definite,

K,C ≥ 0, and the mass matrix positive definite, M > 0. This guarantees the unconditional

stability of the scheme, even in the absence of mechanical damping (which also contributes

to energy dissipation), as the mechanical energy remains bounded. It is also seen that

the work of the external forces includes both a continuous contribution proportional to

the average forces over the timestep (I1) and a discrete contribution associated with the

centered time-force moment over the timestep (tn+1/2I1 − I2).

Further details about this formulation can be found, among other texts, in [17, 26, 32,

37, 38].

3.2. Armero and Romero’s scheme – ArRo

Armero and Romero [8] have proposed an energy decaying time integration scheme for

application to nonlinear elastodynamics that degenerates into a TDG-like scheme when

applied to a linear problem. Their reasoning follows from the introduction of dissipative

terms in the equations of motion and the velocity update formula so that they ensure the
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ACCURACY OF ONE-STEP INTEGRATION SCHEMES FOR STRUCTURAL DYNAMICS 17

scheme to enjoy the property of algorithmic energy decay by construction. The scheme

is second-order accurate. It is parametrized by an algorithmic variable α ∈ [0, 1/6] that

controls the cut-off frequency at which the spectral radius associated with the linear

undamped/unforced oscillator starts its dip toward 0. The scheme exhibits the property

of spectral annihilation as well, whatever α ∈ (0, 1/6]. It is conservative for α = 0.

Application of the scheme to the problem of linear structural dynamics yields the one-step

update equations 

1
2K 1

hM + 1
2C 1

2K 1
2C

I −h2 I 0 −h2 I

0 αhI I −αhI

−αK −αC αK 1
hM + αC





un+1

vn+1

un+

vn+


=



0 1
hM

I 0

I 0

0 1
hM


 un

vn

+



1
2 (fn+1 + fn)

0

0

1
2 (fn − fn+1)


.

(48)

Details about the scheme derivation and its spectral analysis for the undamped/unforced

case are to be found in the paper by Armero and Romero [8]. The evolution of the spectral

radius as well as these of the relative period error and of the numerical damping are shown

in Figure 2 for α ∈ {0, (1/6)3, (1/6)2, 1/6}.
Noting that, under the assumption of linear variation, integral actions approximate to

I1 =

ˆ tn+1

tn

f(t) dt ' h

2
(fn+1 + fn) ,

tn+1/2I1 − I2 =

ˆ tn+1

tn

(
tn+1/2 − t

)
f(t) dt ' −h

2

12
(fn+1 − fn) ,

(49)

with second-order accuracy, the similitude with the TDG scheme readily appears for

α = 1/6; the update structure of the TDG scheme is recovered, but for the loading terms

that are evaluated with low order quadrature.

The energy variation over a timestep for the unforced/undamped case can be found

in [26]. Extension to the damped/forced case is straightforward from results (46)-(47) by

exploitation of the similitude with the TDG scheme

∆E =
1

2
∆u · (fn + fn+1)− 1

12α
JunK · (fn+1 − fn)

work of external forces

− 1

h
∆u ·C∆u

viscous
dissipation

− (DK +DC +DM ) ,

numerical
dissipation

(50)
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Figure 2. The left plot shows the variation of the ArRo scheme spectral radius when applied
to the scalar undamped/unforced linear oscillator. Algorithmic parameter α controls the cut-
off frequency at which damping becomes significant. The spectral radius at infinite frequency
is zero, ρ∞ = 0, whatever α ∈ (0, 1/6]. The case α = 0 corresponds to numerically conservative
integration (ρ∞ = 1). The right plot depicts the relative period error and the numerical damping

arising from the numerical integration.

with

DK :=
1

2
JunK ·KJunK, DC :=

1

2αh
JunK ·CJunK, DM :=

1

2
JvnK ·MJvnK. (51)

Dissipative factors play a role similar to the one they have in the case of the TDG scheme,

for α > 0. For α = 0, the ArRo scheme degenerates into the conservative second-order

midpoint scheme. Jump discontinuities vanish (un+ = un,vn+ = vn) and the mechanical

energy variation over a timestep simplifies to

∆E =
1

2
∆u · (fn + fn+1)

work of
ext. forces

− 1

h
∆u ·C∆u

viscous
dissipation

. (52)

The scheme is thus numerically conservative for α = 0. Furthermore, it is unconditionally

stable for α ≥ 0.

3.3. Bottasso and Trainelli’s scheme – BoTr

For some applications, spectral annihilation might not be a desired property for an

integration scheme. To gain control on the spectral radius at infinite frequency and,

thereby, on the amount of numerical dissipation in the high-frequency range, Bottasso and
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Trainelli [26] have proposed another variation of the TDG scheme. It is given by

1
2K 1

hM + 1
2C 1

2K 1
2C

I −h2 I 0 −h2 I

0 h
6 I I −β h6 I

− 1
6K − 1

6C β
6 K 1

hM + β
6 C





un+1

vn+1

un+

vn+



=



0 1
hM

I 0

I (1− β)h6 I

β−1
6 K 1

hM + β−1
6 C


 un

vn

+



1
hI1

0

0

2
h2

(
tn+1/2I1 − I2

)


.

(53)

Similarly to the TDG scheme, integral actions I1, I2 should be evaluated with third degree

exactness. Algorithmic parameter β ∈ [0, 1] enables the control of the spectral radius at

infinity via

β =
1− ρ∞
1 + ρ∞

←→ ρ∞ =
1− β
1 + β

. (54)

Its influence on the scheme properties, in the undamped/unforced case, is depicted in

Figure 3. The scheme is third-order accurate in the dissipative setting (β ∈ (0, 1]) and

fourth-order accurate in the numerically conservative setting (β = 0). The limit case β = 1

corresponds to the TDG scheme.

Parameter β also plays a direct role in the numerical dissipation during timestepping, as

it explicitly appears in the mechanical energy variation over a timestep

∆E =
1

h
∆u · I1 +

6

h2
JunK ·

(
tn+1/2I1 − I2

)
work of external forces

− 1

h
∆u ·C∆u

viscous
dissipation

− (βDK +DC + βDM ) ,

numerical
dissipation

(55)

with the dissipative potentials given in equation (47). Stability is thus guaranteed for all

timestep values, through the boundedness of the mechanical energy. When β = 0, jump

discontinuities vanish (un+ = un,vn+ = vn); the scheme is numerically conservative and

the energy variation over a timestep reduces to

∆E =
1

h
∆u · I1

work of
ext. forces

− 1

h
∆u ·C∆u

viscous
dissipation

. (56)

Applications of this scheme to problems of the nonlinear flexible multibody class are to

be found in [25, 39], for which it was originally developed.
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Figure 3. The left plot shows the variation of the BoTr scheme spectral radius when applied
to the scalar undamped/unforced linear oscillator. The spectral radius at infinite frequency is
adjusted via the algorithmic parameter β = (1− ρ∞)/(1 + ρ∞) ∈ [0, 1]. The right plot depicts the
relative period error and the numerical damping arising from the numerical integration. The
TDG scheme is recovered for β = 1. The above plots also characterize the spectral properties of

the amplification matrix of Krenk’s scheme, for the undamped/unforced configuration.

3.4. Scheme accuracy

The framework introduced in Section 2.2 is adapted for two-level one-step integration

schemes. The four-level integration schemes presented above need to be recast in their

equivalent two-level form before their orders of accuracy can be assessed. To that end, we

eliminate the internal degrees of freedom using static condensation. Rewriting the one-step

update system under the partitioned form HA
0 HB

0

HC
0 HD

0


 xn+1

xn+

 =

 HA
1

HC
1

xn +

 `n+1,A
n

`n+1,C
n

 , (57)

with state (column) vector xn = [un ; vn], it is readily established that(
HA

0 −HB
0

(
HD

0

)−1
HC

0

)
xn+1

=
(
HA

1 −HB
0

(
HD

0

)−1
HC

1

)
xn + `n+1,A

n −HB
0

(
HD

0

)−1
`n+1,C
n .

(58)

The determinant of matrix HD
0 is given by

∣∣HD
0

∣∣ =
1

h

∣∣M + θhC + θ2h2K
∣∣ , (59)

with θ = 1/6, θ = α and θ = β/6 for the TDG, ArRo and BoTr schemes, respectively. It is

positive, |HD
0 | > 0, given the assumptions of definiteness of the stiffness, damping and mass

matrices, which guarantees the invertibility of the matrix. The condensed iteration matrices
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Figure 4. Scaled error dependency on the timestep, comparison of the accuracies achieved by
the TDG, ArRo and BoTr schemes on the linear scalar model problem with sinusoidal excitation
(a(t) = sinωt) and model parameters (ω0, ω) = (1, 2). The left plot corresponds to the scaled error
norm on the homogeneous response component (e1(h)/h) whereas the error on the forced response
component (e2(h)/h) is considered in the right one. Solid lines (—) depict results relative to the
conservative setting of the scheme (ρ∞ = 1), dashed ones (- -) illustrate the dissipative setting
of the scheme (TDG: ρ∞ = 0, ArRo: α = 1/36, BoTr: β = 1/3). Black lines correspond to the
undamped case (ζ = 0); gray ones to the damped case (ζ = 0.1). Line slopes represent the orders
of accuracy k1, k2. The observed orders of accuracy (k = min{k1, k2}) are consistent with those

predicted by the conventional analysis based on the amplification matrix.

and vector are then identified as

Ĥ0 = HA
0 −HB

0

(
HD

0

)−1
HC

0 , Ĥ1 = HA
1 −HB

0

(
HD

0

)−1
HC

1 ,̂̀n+1

n = `n+1,A
n −HB

0

(
HD

0

)−1
`n+1,C
n .

(60)

Computation of scaled errors e1(h)/h, e2(h)/h versus the timestep h, on the basis of the

condensed scheme, yields the results of Figure 4. A sinusoidal loading is considered; the

Cavalieri-Simpson quadrature formula is used to numerically integrate the force actions.

Contrary to Krenk’s scheme, the accuracy of the schemes is independent of the presence of

natural damping and of external loading. Also, the schemes achieve the expected accuracies,

i.e., the ones predicted by the error analysis on the undamped/unforced linear oscillator;

the TDG scheme is third-order accurate, the ArRo one is second order and the BoTr is

fourth-order accurate in the conservative setting (ρ∞ = 1) and third-order accurate in the

dissipative one (ρ∞ < 1). The accuracy properties of the schemes are summarized in Table II.

Quite unexpectedly, the performance of the BoTr scheme matches the one expected for

Krenk’s scheme. In fact, the amplification matrices of both schemes, as computed on the

undamped/unforced linear oscillator, can be shown to match exactly under the substitution

χ = β/6, a relation that was already hinted by equations (38) and (54). This similarity

is exploited in the next section to provide the corrections to Krenk’s scheme required to

achieve the originally expected performances.
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Table II. Property summary of the TDG-like four-level one-step algorithms introduced in
Section 3. Scheme settings that have a unit spectral radius at infinite frequency, ρ∞ = 1,
correspond to energy preserving configurations; others do to algorithmic energy decaying schemes.

Scheme Algo. param. ρ∞ Accuracy (k)

TDG / 0 3

ArRo α ∈ (0, 1/6] 0 2

α = 0 1 2

BoTr β ∈ (0, 1] 1−β
1+β 3

β = 0 1 4

4. CORRECTION TO KRENK’S SCHEME

The accuracy analysis of Krenk’s scheme has hinted the need for additional terms in the

scheme formulation that include the numerical damping parameter χ. In order to identify

these terms, we transform the BoTr scheme into its two-level form and exploit its similitude

with Krenk’s one.

To that end, we reduce formulation (53) using the static condensation formulated in

equation (58). With the help of the matrix block inversion formula [40]

S−1 =

 A B

C D


−1

=

 A−1 + A−1B (S\A)
−1

CA−1 −A−1B (S\A)
−1

− (S\A)
−1

CA−1 (S\A)
−1

 , (61)

where (S\A) = D−CA−1B denotes the Schur complement of the partitioned matrix S

with respect to A, we identify the entries of the reduced iteration matrices and vector Ĥuu
0 Ĥuv

0

Ĥvu
0 Ĥvv

0


 un+1

vn+1

 =

 Ĥuu
1 Ĥuv

1

Ĥvu
1 Ĥvv

1


 un

vn

+

 ̂̀n+1,u

n̂̀n+1,v

n

 (62)
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as

Ĥuu
0 =

1

2
K +

(
βh

72
K +

1

12
C

)
(S\A)

−1
K,

Ĥuv
0 =

1

h
M +

1

2
C− h

12
K +

β2h2

432
K (S\A)

−1
K +

βh

72

(
C (S\A)

−1
K + K (S\A)

−1
C
)

+
1

12
C (S\A)

−1
C,

Ĥvu
0 = I− h

12
(S\A)

−1
K,

Ĥvv
0 = −h

2
I− βh2

72
(S\A)

−1
K− h

12
(S\A)

−1
C,

Ĥuu
1 = −1

2
K +

βh

72
K (S\A)

−1
K +

1

12
C (S\A)

−1
K,

Ĥuv
1 =

1

h
M− 1

2
C− h

12
K +

β2h2

432
K (S\A)

−1
K +

βh

72

(
C (S\A)

−1
K + K (S\A)

−1
C
)

+
1

12
C (S\A)

−1
C,

Ĥvu
1 = I− h

12
(S\A)

−1
K,

Ĥvv
1 =

h

2
I− (S\A)

−1

(
h

12
C +

βh2

72
K

)
,

̂̀n+1,u

n =
1

h
I1 −

(
β

6h
K +

1

h2
C

)
(S\A)

−1 (
tn+1/2I1 − I2

)
,

̂̀n+1,v

n =
1

h
(S\A)

−1 (
tn+1/2I1 − I2

)
.

(63)

The Schur complement values S\A = 1
hM + β

6 C + β2h
36 K and is invertible in virtue of the

definiteness assumptions on the stiffness, damping and mass matrices. Simplifications then

follow by left-multiplication of partitioned matrix equation (62) by the conditioning matrix

Q =

 hI βh
6 K + C

−βh
2

6 I M

 . (64)

Completing all algebra, we obtain the simplified two-level form of the BoTr scheme C +
(

1
2 + β

6

)
hK M−

(
1
12 + β

12

)
h2K

M−
(

1
12 + β

12

)
h2K −

(
1
2 + β

6

)
hM−

(
1
12 + β

12

)
h2C


 un+1

vn+1


=

 C−
(

1
2 −

β
6

)
hK M−

(
1
12 −

β
12

)
h2K

M−
(

1
12 −

β
12

)
h2K

(
1
2 −

β
6

)
hM−

(
1
12 −

β
12

)
h2C


 un

vn


+

 I1(
tn+1/2 − β

6h
)

I1 − I2

 .

(65)
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Similitude with Krenk’s scheme (37) becomes obvious by noting the equivalence χ←→ β/6,

that hf̄ = I1 and that, under the assumption of linear evolution of the external load,

−h2∆f/12 = tn+1/2I1 − I2.

In particular, the schemes are fully equivalent in the undamped/unforced case. The plots

of Figure 3 thus characterize Krenk’s scheme as well. For other configurations, however,

discrepancies between the two schemes are noted. They reveal the terms missing in Krenk’s

formulation to ensure full consistency in regards to the introduction of artificial (numerical)

damping and confirm the observations to the analysis results given in Figure 1 and Table I.

1. The iteration matrices should include a damping term proportional to the damping

matrix and the algorithmic parameter χ to enable third-order accuracy in the

numerically dissipative setting in the presence of structural damping.

2. The first-order time-force moment entering the evolution equations should be

evaluated with respect to shifted midstep time tn+(1−β)/2 := tn + (1− β)h/2 and not

the midstep time tn+1/2. Whether low-order or high-order quadrature is used to

evaluate it, does not alter the order of the scheme; only C2 is affected.

The missing terms in the integration scheme given in equation (37) are the result of

the constructive nature that underlies the derivation of the scheme, as applied to the

undamped/unforced model problem. Had the author accounted for damping and external

forcing in the engineering and analysis of the scheme, the accuracy issues would have been

identified from the start.

Given that discontinuity variables do not present a physical interest in problems

of structural dynamics, the two-level formulation of the BoTr scheme presents several

advantages over its four-level original version. First, the reduction of the original four-level

system to an equivalent two-level form leads to a reduction of the state-space dimension by a

factor two. On large systems, this can result in a significant reduction of the computational

burden, even though the two-level form is not as sparse as the four-level one. Second, the

iteration matrices of the two-level form are symmetric, contrary to the ones of the four-level

form. This symmetry can appropriately be exploited to lessen the required storage space

as well as for solving the update system of equations at each increment using an ad hoc

procedure. This, in turn, can also prove beneficial as regards the computational effort.

5. CONCLUSIONS

This paper introduces a novel approach for the estimation of the local truncation error

(LTE) arising in two-level one-step time integration schemes for linear structural dynamics.

It naturally accounts for structural damping and external forcing, terms that are generally

neglected in conventional accuracy analyses. Moreover, it proposes a separate treatment of

the errors relative to the free and forced responses of the linear structural dynamics problem.

Subsequent to that presentation is the application of this accuracy analysis framework to

two integration schemes. The second example reveals the shortcomings of the traditional

accuracy analysis that fails at identifying deficiencies in the analyzed high-order scheme.
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Follow developments for the restoration of the expected high-order accuracy of the analyzed

scheme. They imply the reduction of a four-level one-step scheme related to the time

discontinuous Galerkin (TDG) method to its equivalent two-level formulation and the

identification of missing terms in the original formulation of the high-order scheme.

The estimation of the LTE relative to the use of time integration schemes as applied

to linear structural dynamics problems is typically performed on the basis of the scalar

undamped homogeneous linear oscillator. The scheme order of accuracy is obtained by

spectral analysis of the scheme amplification matrix. By design, this procedure does not

account for the effects of natural damping and external loading on the scheme response.

It is therefore prone to shortcomings, for it is incomplete. In that sense, the approach we

propose is complete for it is based on the generic governing equation of linear structural

dynamics, including structural damping and external forcing. It is based on the evaluation

of the error norm proposed by Romero [36] that quantifies the LTE in a metric related to the

mechanical energy of the error on the displacement and velocity variables. Decomposition of

the error in terms of the homogeneous and particular responses is provided to enable their

separate treatment. Furthermore, the proposed formulation does not require the uncoupling

of the equations of motion through modal expansion. Assessment of the scheme accuracy can

therefore be performed in usage conditions with no assumptions on the nature of structural

damping.

As illustration examples, we apply the framework to the trapezoidal scheme as well as to

the high-order one engineered by Krenk [19]. The analytical analysis of the first example

recovers the well-known second-order nature of the trapezoidal scheme. The numerical

analysis of the latter, however, brings to light losses of accuracy when the high-order scheme

is used in the numerically dissipative setting, in the presence of structural damping or

external forcing. The results of the throrough analysis performed by the author, on the

basis of the scalar undamped/unforced linear oscillator, are shown to not extend to other

configurations of the oscillator. This underscores the importance of the completeness of the

accuracy analysis, a point that was already raised by Wood [20] that, nevertheless, has not

been of much application in the literature.

In order to correct the deficiencies of the analyzed high-order scheme, we demonstrate

its similitude with the BoTr scheme, a TDG-related scheme proposed by Bottasso and

Trainelli [26], enabling the identification of the missing terms in the high-order scheme.

First, we extend their exposition of TDG-related energy decaying schemes from the scalar

undamped/unforced oscillator to the generic model of linear structural dynamics and

conduct the accuracy analysis of these schemes using the proposed approach. Unconditional

stability, for the linear problem, is also proven on the basis of energy arguments. Second, we

recast the four-level BoTr scheme into its equivalent two-level form, by elimination of the

internal variables through static condensation. The reduced form of the scheme is then shown

equivalent to that of the deficient high-order one, in the absence of numerical damping.

We then hypothesize that the two schemes are equivalent for all configurations. Not only

does this assumption provide all the corrective terms by identification of the discrepancies

between to the two formulations, it also opens the way to making a connection between

TDG-related schemes, based on a sound mathematical formulation, and the ones derived
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on the basis of an integration by parts of the equation of motion, for which numerical

dissipation is introduced by way of constructive and intuitive arguments.
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