Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Explore
Search
Special collections
Statistics
News
Help
Start on ORBi
Deposit
Profile
Publication List
Add your ORCID
Tutorials
Legal Information
Training sessions
About
What's ORBi ?
Impact and visibility
Around ORBi
About statistics
About metrics
OAI-PMH
ORBi team
Release Notes
Back
Home
Detailled Reference
Download
Poster (Scientific congresses and symposiums)
Can we interpret linear kernel machine learning models using anatomically labelled regions?
Schrouff, Jessica
;
Monteiro, Joao
;
Joao Rosa, Maria
et al.
2014
•
Organization for Human Brain Mapping
Permalink
https://hdl.handle.net/2268/170848
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
JS_OHBM_abstract.pdf
Author preprint (717.32 kB)
Download
All documents in ORBi are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Keywords :
neuroimaging; machine learning; multi-kernel
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Schrouff, Jessica
;
Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Monteiro, Joao
Joao Rosa, Maria
Portugal, Liana
Phillips, Christophe
;
Université de Liège - ULiège > Centre de recherches du cyclotron
Mourao-Miranda, Janaina
Language :
English
Title :
Can we interpret linear kernel machine learning models using anatomically labelled regions?
Publication date :
June 2014
Event name :
Organization for Human Brain Mapping
Event organizer :
20th Annual Meeting of the Organization for Human Brain Mapping
Event place :
Hamburg, Germany
Event date :
8-12 june 2014
Audience :
International
Additional URL :
http://www.humanbrainmapping.org/ohbm2014
Available on ORBi :
since 26 July 2014
Statistics
Number of views
665 (28 by ULiège)
Number of downloads
696 (19 by ULiège)
More statistics
Bibliography
Similar publications
Contact ORBi