[en] The influence of substrate hydrophobicity and biomacromolecules (dextran, bovine serum albumin - BSA) adsorption on the cleanability of surfaces soiled by spraying aqueous suspensions of quartz particles (10 to 30 µm size), then dried, was investigated using glass and polystyrene as substrates. The cleanability was evaluated using radial flow cell (RFC). The surface composition was determined by X-ray photoelectron spectroscopy (XPS). The interpretation of XPS data allowed the complexity due to the ubiquitous presence of organic contaminants to be coped with, and the surface composition to be expressed in terms of both the amount of adlayer and the mass concentration of adlayer constituents.
When soiled with a suspension of particles in water, glass was much less cleanable than polystyrene, which was attributed to its much lower water contact angle, in agreement with previous observations on starch soil. Dextran was easily desorbed and did not affect the cleanability. The presence of BSA at the interface strongly improved the cleanability of glass while the contact angle did not change appreciably. In contrast, soiling polystyrene with quartz particles suspended in a BSA solution instead of water did not change markedly the cleanability, while the contact angle was much lower and the aggregates of soiling particles were more flat. These observations are explained by the major role of capillary forces developed upon drying, which influence the closeness of the contact between the soiling particles and the substrate and, thereby, the adherence of particles. The capillary forces are proportional to the liquid surface tension and depend in a more complex way on contact angles of the particles and of the substrate. The dependence of cleanability on capillary forces, and in particular on the liquid surface tension, is predominant as compared with its dependence on the size and shape of the soiling aggregates, which influence the efficiency of shear forces exerted by the flowing water upon cleaning.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Genet, J. Michel; Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 1/L7.04.01, B-1348 Louvain-la-Neuve, Belgium.
Dupont-Gillain, C. Christine; Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 1/L7.04.01, B-1348 Louvain-la-Neuve, Belgium.
Sindic, Marianne ; Université de Liège - ULiège > Chimie et bio-industries > Laboratoire Qualité et sécurité des produits agro-aliment.
Rouxhet, G. Paul; Institute of Condensed Matter and Nanosciences - Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 1/L7.04.01, B-1348 Louvain-la-Neuve, Belgium.
Language :
English
Title :
Conditioning materials with biomacromolecules: composition of the adlayer and influence on cleanability
Kralchevsky P.A., Nagayama K. Lateral capillary forces between partially immersed bodies 2001, Elsevier, Amsterdam, 287-350.
Kralchevsky P.A., Nagayama K. Langmuir 1994, 10(1):23-36.
Kuisma R., Fröberg L., Kymäläinen H.-R., Pesonen-Leinonen E., Piispanen M., Melamies P., Hautala M., Sjöberg A.-M., Hupa L. J. Eur. Ceram. Soc. 2007, 27(1):101-108.
Lower B.H., Yongsunthon R., Iii F.P.V., Lower S.K. J. Bacteriol. 2005, 187(6):2127-2137.
Määttä J., Piispanen M., Kuisma R., Kymäläinen H.-R., Uusi-Rauva A., Hurme K.-R., Arevad S., Sjöberg A.-M., Hupa L. J. Eur. Ceram. Soc. 2007, 27(16):4555-4560.
Mauermann M., Calvimontes A., Bellmann C., Simon F., Schöler M., Majschak J.P. Proc. Int. Conf. Heat Exch. Fouling Clean 2011, IX:227-234.
Mercier-Bonin M., Adoue M., Zanna S., Marcus P., Combes D., Schmitz P. J. Colloid Interface Sci. 2009, 338(1):73-81.
Norde W., Giacomelli C.E. J. Colloid Interface Sci. 2000, 79(3):259-268.
E. Pesonen-Leinonen, R. Kuisma, I. Redsven, A. Sjöberg, M. Hautala, Can contact angle measurements be used to predict soiling and cleaning of plastic flooring materials? in: K.L. Mittal (Ed.), Contact Angle, Wettability Adhesion, VSP/Brill, Leiden 4 (2006a) 203-14.
Pesonen-Leinonen E., Redsven I., Neuvonen P., Hurme K.-R., Pääkko M., Koponen H.-K., Pakkanen T.T., Uusi-Rauva A., Hautala M., Sjöberg A.-M. Appl. Radiat. Isot. 2006, 64(2):163-169.
Piispanen M., Kronberg T., Areva S., Hupa L. J. Am. Ceram. Soc. 2011, 94(3):951-958.
Pitois O., Moucheront P., Château X. J. Colloid Interface Sci. 2000, 231(1):26-31.
Podczeck F. Int. J. Pharm. 1999, 178(1):93-100.
Rabinovich Y.I., Adler J.J., Esayanur M.S., Ata A., Singh R., Moudgil B.M. Adv. Colloid Interface Sci. 2002, 96(1-3):213-230.
P.G. Rouxhet, Contact angles and surface energy of solids: relevance and limitations, in: K.L. Mittal (Ed.), Advances in Contact Angle, Wettability and Adhesion, Schrivener Publishing LLC 1 (2013) 347-375.
Speranza G., Gottardi G., Pederzolli C., Lunelli L., Canteri R., Pasquardini L., Carli E., Lui A., Maniglio D., Brugnara M., Anderle M. Biomaterials 2004, 25(11):2029-2037.
Stephan O., Weisz N., Vieths S., Weiser T., Rabe B., Vatterott W. J. AOAC Int. 2004, 87(6):1448-1457.
Thill A., Spalla O. Colloids Surfaces A. Physicochem. Eng. Asp. 2003, 217(1-3):143-151.
E. Tomasetti, S. Derclaye, M.H. Delvaux, P.G. Rouxhet, Study of material-water interactions using the Wilhelmy plate method, in: K.L. Mittal (Ed.), Advances in Contact Angle, Wettability and Adhesion, Schrivener Publishing LLC 1 (2013) 131-154.
Touré Y., Rouxhet P.G., Sindic M. Proc. Int. Conf. Heat Exch. Fouling Clean. 2013, X:285-290.
Touré Y., Rouxhet P.G., Dupont-Gillain C.C., Sindic M. Proc. Int. Conf. Heat Exch. Fouling Clean. 2011, IX:219-226.
Walstra P., Jenness R. Dairy Chemistry and Physics 1984, John Wiley and Sons, New York.
Yang J., Mcguire J., Kolbe E.R. J. Food Prot. 1991, 54(11):879-884.