Alonso, E., A. Gens, & A. Josa (1990). A constitutive model for partially saturated soils. Geotechnique 40, 405-430.
Birle, E. (2012). Effect of initialwater content and dry density on the pore structure and the soil-water retention curve of compacted clay. In C. Mancuso, C. Jommi, and F. D'Onza (Eds.), Unsaturated Soils: Research and Applications, pp. 145-152.
Casini, F., J. Vaunat, E. Romero, & A. Desider (2012). Consequences on water retention properties of double-porosity features in a compacted silt.Acta Geotechnica 7, 139-150.
Cuisinier, O. & L. Laloui (2004). Fabric evolution during hydromechanical loading of a compacted silt. Int. J. Num. Anal. Meth. Geomech. 28, 483-499.
Delage, P. (2010).A microstructure approach to the sensitivity and compressibility of some eastern canada sensitive clays. Geotechnique 60, 353-368.
Della-Vecchia, G. (2009). Coupled hydro-mechanical behaviour of compacted clayey soils. Ph.D. thesis, Politecnico di Milano.
Della-Vecchia, G., C. Jommi & E. Romero (2013). A fully coupled elastic-plastic hydromechanical model for compacted soils accounting for clay activity. Int. J. Num. Anal. Meth. Geomech. 37, 503-535.
Dieudonne, A., S. Levasseur, R. Charlier, G. Della-Vecchia & C. Jommi (2013).A water retention model for compacted clayey soils. In S. Pietruszczack and G. Pande (Eds.), Computational Geomechanics, pp. 23-31.
Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure.Water Resources Research 30, 211-223.
Gitirana Jr., G. & D. Fredlund (2004). Soil-water characteristic curve equation with independent properties. J. of Geotech. and Geoenv. Engng., ASCE 130, 209-212.
Monroy, R., L. Zdravkovic & A. Ridley (2010). Evolution of microstructure in compacted London clay during wetting and loading. Geotechnique 60, 105-119.
Musso, G., E. Romero & G. Della-Vecchia (2013). Doublestructure effects on the chemo-hydro-mechanical behaviour of a compacted active clay. Geotechnique 63, 206-220.
Othmer, H., B. Diekkruger & M. Kutilek (1991). Bimodal porosity and unsaturated hydraulic conductivity. Soil Sci. 152, 139-150.
Romero, E. (2013).A microstructural insight into compacted clayey soils and their hydraulic properties. Engineering Geology 165, 3-19.
Romero, E., G. DellaVecchia & C. Jommi (2011).An insight into the water retention properties of compacted clayey soils. Geotechnique 61, 313-328.
Romero, E., A. Gens & A. Lloret (1999). Water permeability, water retention and microstructure of unsaturated compacted boom clay. Engineering Geology 54, 117-127.
Romero, E. & J. Vaunat (2000). Retention curves for deformable clays. In C. Tarantino, A. & Mancuso (Ed.), Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Balkema, Rotterdam, pp. 91-106.
Simms, P. & E. Yanful (2002). Predicting soil-water characteristic curves of compacted plastic soils from measured pore-size distributions. Geotechnique 52, 269-278.
Simms, P. & E.Yanful (2004). Estimation of soil-water characteristic curve of clayey till using measured pore-size distribution. J. Environ. Engng. 130, 847-854.
Thom, R., R. Sivakumar, V. Sivakumar, E. Murray & P. Mackinnon (2007). Pore size distribution of unsaturated compacted kaolin: The initial states and final states following saturation. Geotechnique 57, 469-474.
van Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. 44, 892-898.
Wang, Q., Y. Cui, A. Tang, J. Barnichon, S. Saba & W. Ye (2013). Hydraulic conductivity and microstructure changes of compacted bentonite/sand mixture during hydration. Engineering Geology 164, 67-76.
Washburn, E. (1921). A method of determining the distribution of pore sizes in a porous material. Proc. Nat. Acad. Sci. 7, 115.