[en] BACKGROUND: Despite age-related adipose involution, T cell generation in the thymus (thymopoiesis) is maintained beyond puberty in adults. In rodents, growth hormone (GH), insulin-like growth factor-1 (IGF-1), and GH secretagogues reverse age-related changes in thymus cytoarchitecture and increase thymopoiesis. GH administration also enhances thymic mass and function in HIV-infected patients. Until now, thymic function has not been investigated in adult GH deficiency (AGHD). The objective of this clinical study was to evaluate thymic function in AGHD, as well as the repercussion upon thymopoiesis of GH treatment for restoration of GH/IGF-1 physiological levels. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-two patients with documented AGHD were enrolled in this study. The following parameters were measured: plasma IGF-1 concentrations, signal-joint T-cell receptor excision circle (sjTREC) frequency, and sj/beta TREC ratio. Analyses were performed at three time points: firstly on GH treatment at maintenance dose, secondly one month after GH withdrawal, and thirdly one month after GH resumption. After 1-month interruption of GH treatment, both plasma IGF-1 concentrations and sjTREC frequency were decreased (p<0.001). Decreases in IGF-1 and sjTREC levels were correlated (r = 0.61, p<0.01). There was also a decrease in intrathymic T cell proliferation as indicated by the reduced sj/beta TREC ratio (p<0.01). One month after reintroduction of GH treatment, IGF-1 concentration and sjTREC frequency regained a level equivalent to the one before GH withdrawal. The sj/beta TREC ratio also increased with GH resumption, but did not return to the level measured before GH withdrawal. CONCLUSIONS: In patients with AGHD under GH treatment, GH withdrawal decreases thymic T cell output, as well as intrathymic T cell proliferation. These parameters of thymus function are completely or partially restored one month after GH resumption. These data indicate that the functional integrity of the somatotrope GH/IGF-1 axis is important for the maintenance of a normal thymus function in human adults. TRIAL REGISTRATION: ClinicalTrials.gov NTC00601419.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, et al. (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396: 690-695.
Kong F, Chen CH, Cooper MD (1998) Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity 8: 97-104.
Kong FK, Chen CL, Cooper MD (2002) Reversible disruption of thymic function by steroid treatment. J Immunol 168: 6500-6505.
Poulin JF, Viswanathan MN, Harris JM, Komanduri KV, Wieder E, et al. (1999) Direct evidence for thymic function in adult humans. J Exp Med 190: 479-486.
Geenen V, Brilot F, Hansenne I, Louis C, Charlet-Renard C, et al. (2004) The central role of the thymus in the development of self-tolerance and autoimmunity in the neuroendocrine system. In: Geenen V, Chrousos G, eds. Immunoendocrinology in health and disease. 1st ed. New York: Marcel Dekker. pp 337-356.
Geenen V, Poulin JF, Dion ML, Martens H, Castermans E, et al. (2003) Quantification of T cell receptor rearrangement excision circles to estimate thymic function: an important new tool for endocrine-immune physiology. J Endocrinol 176: 305-311.
Dion ML, Poulin JF, Bordi R, Sylvestre M, Corsini R, et al. (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21: 757-768.
Dulude G, Cheynier R, Gauchat D, Abdallah A, Kettaf N, et al. (2008) The magnitude of thymic output is genetically determined through controlled intrathymic precursor T cell proliferation. J Immunol 181: 7818-7824.
van den Dool C, de Boer RJ (2006) The effects of age, thymectomy, and HIV Infection on alpha and beta TCR excision circles in naive T cells. J Immunol 177: 4391-4401.
Castermans E, Baron F, Willems E, Schaaf-Lafontaine N, Meuris N, et al. (2008) Evidence for neo-generation of T cells by the thymus after non-myeloablative conditioning. Haematologica 93: 240-247.
Leonard W (2003) Type I cytokines and interferons and their receptors. In: Paul W, ed. Fundamental Immunology. 5th ed. Philadelphia: Lippincott Williams & Wilkins. pp 701-747.
Redelman D, Welniak LA, Taub D, Murphy WJ (2008) Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell Immunol 252: 111-121.
Smith P (1930) Effects of hypophysectomy upon involution of the thymus in the rat. Anatomy Record 47: 119-129.
Pierpaoli W, Sorkin E (1968) Hormones and immunologic capacity. I. Effect of heterologous anti-growth hormone (ASTH) antiserum on thymus and peripheral lymphatic tissue in mice. Induction of a wasting syndrome. J Immunol 101: 1036-1043.
Kelley KW, Brief S, Westly HJ, Novakofski J, Bechtel PJ, et al. (1986) GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc Natl Acad Sci U S A 83: 5663-5667.
Murphy WJ, Durum SK, Longo DL (1993) Differential effects of growth hormone and prolactin on murine T cell development and function. J Exp Med 178: 231-236.
Dorshkind K, Horseman ND (2000) The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev 21: 292-312.
Dorshkind K, Horseman ND (2001) Anterior pituitary hormones, stress, and immune system homeostasis. Bioessays 23: 288-294.
Foster MP, Jensen ER, Montecino-Rodriguez E, Leathers H, Horseman N, et al. (2000) Humoral and cell-mediated immunity in mice with genetic deficiencies of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormone. Clin Immunol 96: 140-149.
Herrington J, Smit LS, Schwartz J, Carter-Su C (2000) The role of STAT proteins in growth hormone signaling. Oncogene 19: 2585-2597.
Stocklin E, Wissler M, Gouilleux F, Groner B (1996) Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383: 726-728.
Taub DD, Tsarfaty G, Lloyd AR, Durum SK, Longo DL, et al. (1994) Growth hormone promotes human T cell adhesion and migration to both human and murine matrix proteins in vitro and directly promotes xenogeneic engraftment. J Clin Invest 94: 293-300.
Clark R (1997) The somatogenic hormones and insulin-like growth factor-1: stimulators of lymphopoiesis and immune function. Endocr Rev 18: 157-179.
Montecino-Rodriguez E, Clark R, Dorshkind K (1998) Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology 139: 4120-4126.
Savino W, Dardenne M (2000) Neuroendocrine control of thymus physiology. Endocr Rev 21: 412-443.
Savino W, Postel-Vinay MC, Smaniotto S, Dardenne M (2002) The thymus gland: a target organ for growth hormone. Scand J Immunol 55: 442-452.
Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm YH, et al. (2007) Ghrelin promotes thymopoiesis during aging. J Clin Invest 117: 2778-2790.
Napolitano LA, Lo JC, Gotway MB, Mulligan K, Barbour JD, et al. (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. Aids 16: 1103-1111.
Napolitano LA, Schmidt D, Gotway MB, Ameli N, Filbert EL, et al. (2008) Growth hormone enhances thymic function in HIV-1-infected adults. J Clin Invest 118: 1085-1098.
Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Shalet SM, et al. (2006) Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 91: 1621-1634.
Sneppen SB, Mersebach H, Ullum H, Feldt-Rasmussen U (2002) Immune function during GH treatment in GH-deficient adults: an 18-month randomized, placebo-controlled, double-blinded trial. Clin Endocrinol (Oxf) 57: 787-792.
Geenen V, Achour I, Robert F, Vandersmissen E, Sodoyez JC, et al. (1993) Evidence that insulin-like growth factor 2 (IGF2) is the dominant thymic peptide of the insulin superfamily. Thymus 21: 115-127.
Kecha O, Martens H, Franchimont N, Achour I, Hazee-Hagelstein MT, et al. (1999) Characterization of the insulin-like growth factor axis in the human thymus. J Neuroendocrinol 11: 435-440.
Arkins S, Rebeiz N, Biragyn A, Reese DL, Kelley KW (1993) Murine macrophages express abundant insulin-like growth factor-I class I Ea and Eb transcripts. Endocrinology 133: 2334-2343.
de Mello Coelho V, Villa-Verde DM, Farias-de-Oliveira DA, de Brito JM, Dardenne M, et al. (2002) Functional insulin-like growth factor-1/ insulin-like growth factor-1 receptor-mediated circuit in human and murine thymic epithelial cells. Neuroendocrinology 75: 139-150.
Kooijman R, Scholtens LE, Rijkers GT, Zegers BJ (1995) Type I insulin-like growth factor receptor expression in different developmental stages of human thymocytes. J Endocrinol 147: 203-209.
Binz K, Joller P, Froesch P, Binz H, Zapf J, et al. (1990) Repopulation of the atrophied thymus in diabetic rats by insulin-like growth factor I. Proc Natl Acad Sci U S A 87: 3690-3694.
Hinton PS, Peterson CA, Dahly EM, Ney DM (1998) IGF-I alters lymphocyte survival and regeneration in thymus and spleen after dexamethasone treatment. Am J Physiol 274: R912-920.
Kecha O, Brilot F, Martens H, Franchimont N, Renard C, et al. (2000) Involvement of insulin-like growth factors in early T cell development: a study using fetal thymic organ cultures. Endocrinology 141: 1209-1217.
Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, et al. (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205: 1701-1714.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.