Article (Scientific journals)
Embryonic Protein Undernutrition by Albumen Removal Programs the Hepatic Amino Acid and Glucose Metabolism during the Perinatal Period in an Avian Model.
Willems, Els; Hu, Tjing-Tjing; Soler Vasco, Laura et al.
2014In PLoS ONE, 9 (4), p. 94902
Peer Reviewed verified by ORBi
 

Files


Full Text
Willems et al 2014 plos one.pdf
Publisher postprint (760 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group), compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3), corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4) concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected pointing to post-transcriptional or post-translational regulation of the observed differences.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Willems, Els
Hu, Tjing-Tjing
Soler Vasco, Laura
Buyse, Johan
Decuypere, Eddy
Arckens, Lutgarde
Everaert, Nadia ;  Université de Liège - ULiège > Sciences agronomiques > Zootechnie
Language :
English
Title :
Embryonic Protein Undernutrition by Albumen Removal Programs the Hepatic Amino Acid and Glucose Metabolism during the Perinatal Period in an Avian Model.
Publication date :
2014
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Volume :
9
Issue :
4
Pages :
e94902
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 05 May 2014

Statistics


Number of views
66 (3 by ULiège)
Number of downloads
105 (0 by ULiège)

Scopus citations®
 
16
Scopus citations®
without self-citations
11
OpenCitations
 
12

Bibliography


Similar publications



Contact ORBi