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Abstract

Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by
which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal
effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of
protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was
established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived
group), compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived
group was lower compared to the control and sham group due to increased early mortality by the manipulation. No
treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was
reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control
group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3),
corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At
embryonic day 20, the plasma thyroxine (T4) concentrations of the albumen-deprived embryos was reduced compared to
the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch
using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for
amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose
transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No
parallel differences in gene expressions causing the differences in protein abundance could be detected pointing to post-
transcriptional or post-translational regulation of the observed differences.
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Introduction

Studies of the Dutch Hunger Winter (1944–1945) clearly

showed that reduced growth in utero has detrimental effects on

health in later life [1]. An association between a low birth weight

and type II diabetes or impaired glucose tolerance has been found

in people born around the time of the famine [2]. This means that

poor nutrition in utero may lead to permanent changes in insulin-

glucose metabolism. Indeed, by restricting the nutrient supply

during the prenatal period, the fetus adapts to a low nutrient

environment and makes metabolic adaptations to survive.

However, when nutrition is adequate or overabundant in the

postnatal life, a conflict between the programming and the

postnatal conditions arises [3,4]. The latter is referred to as the

‘fetal origins’ hypothesis’ [5], which states that it is the conflict

between the prenatal metabolic programming and the postnatal

conditions that leads to disease and malfunction.

Prenatal protein undernutrition has been studied in several

animal models. In these models, the maternal diet is manipulated,

exerting direct nutritional effects as well as indirect effects such as

hormonal changes on the fetus. As proposed by [6], the approach

of albumen removal in avian eggs, as a model of prenatal protein

undernutrition, offers a unique avian model to investigate the

direct effect of reduced protein availability during embryogenesis

on growth and metabolism. Recently, the effect of a low protein

diet provided to the hens on metabolic programming of the

offspring was investigated in the chicken [7]. Both the investigation

of the direct (i.e. chicken embryos) and indirect animals models of

prenatal protein deprivation can contribute to unraveling the

prenatal programming effects. Several studies have already been
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conducted examining the effects of albumen removal in chicken

for various reasons [6,8,9,10]. A long-term study was previously

conducted to examine the importance of albumen as a protein

source during embryonic development in the chicken [9]. Before

sexual maturation, the body weight and feed intake were reduced.

In contrast, during adulthood, an increased body weight was

accompanied by reduced reproduction performance (reduced

laying rate and egg weight), indicating long-lasting programming

effects.

The objective of the present study was to investigate if the

chicken model of prenatal protein undernutrition already displays

significant differences during the perinatal period, before the

conflict between the prenatal and postnatal conditions arises and

whether it is possible to detect effects on programming on the

protein and gene expression during this period. For this purpose,

3 mL of albumen was removed from layer-type eggs and replaced

with saline. During the perinatal period, the present model showed

little differences in growth, hormones and metabolites and hepatic

glycogen content, supporting the ‘fetal origins’ hypothesis’.

However, metabolic programming caused by prenatal protein

undernutrition was revealed by the observed hepatic proteome

changes related with amino acids catabolism and glucose

metabolism. Interestingly, the differential protein expression of

these enzymes was not accompanied by a differential mRNA

expression, suggesting that the observed proteome changes are

related with post-transcriptional or post-translational events. The

present results point to an interesting model, that can be used

complementary to mammalian models for the further elucidation

of the effects and mechanisms of prenatal protein undernutrition.

Materials and Methods

Ethics statement
All experiments were conducted in strict accordance with the

European Communities Council Directive (2003/65/EC) and

were approved by the Institutional Ethical Committee of KU

Leuven (P132/2008).

Experimental design
Incubation. A total of 528 fertilized Isa Brown layer-type

eggs (Vepymo, Poppel, Belgium) from a 48-week-old breeder flock

were individually numbered, weighed and randomLy divided over

the three treatments. From 19 additional eggs, the albumen and

yolk weight were determined. The eggs consisted of 26.660.4%

yolk, 59.260.5% albumen and 14.260.3% egg shell. The eggs

were incubated with the blunt end up in one forced-draft

incubator (PAS Reform, Zeddam, the Netherlands) at a dry bulb

temperature of 37.6uC and a wet bulb temperature of 29.0uC and

were turned every hour over 90u. On embryonic day (ED) 18, all

eggs were candled and those with living embryos were transferred

from the turning trays to individual hatching baskets. After 22 days

of standard incubation, the unhatched eggs were opened and

checked for fertility or time of death in order to calculate survival

percentage. Infertility was calculated as the number of infertile

eggs relative to the total number of set eggs (%). Survival

percentage was calculated as the number of hatched chicks relative

to the number of fertile eggs (%). Early mortality was defined as

dead embryos before ED 10 and mid mortality between ED 10–

18. Embryos that died after ED 18 or were ready to hatch and

alive in the shell, but had not hatched after 22 days of incubation,

were classified as late embryonic mortality. Mortality rates were

calculated relative to the number of fertile eggs (%).

Albumen removal. This method was previously described in

[9]. Briefly, after one day of incubation (ED 1), albumen removal

was established in 240 eggs (albumen-deprived group). After

disinfection, a hole was drilled near the sharp end of the egg, 3 mL

of albumen was replaced by the same volume of sterile saline, the

hole was sealed using a drop of paraffin and the eggs were

weighed. Albumen is the main source of protein for the developing

embryo [11] and so the net effect is a prenatal protein

undernutrition. A sham group of 144 eggs was mock-treated,

similar to the albumen-deprived group, except for the actual

albumen removal and saline injection. A third group of 144 eggs

received no treatment (control group). The difference in the

number of eggs for each treatment was based on the higher

expected mortality due to albumen removal. To verify that the

replacement of the albumen by saline was successful, the mean egg

weight before incubation and after manipulation were compared.

Sampling
At embryonic day (ED) 16 and 20 and at hatch, 15 embryos/

chicks per group were weighed and killed by decapitation. The

residual yolk was dissected and relative weights of both yolk and

yolk-free body weight (YFBW) to egg weight at ED 1 were

calculated. Weight of liver, heart, digestive tract and carcass was

measured and proportional weights relative to YFBW were

calculated. The digestive tract was defined as starting from the

end of the esophagus, containing the proventriculus, the gizzard,

the small and large intestine until the beginning of the cloaca. The

carcass was defined as the YFBW minus liver, heart and digestive

tract. Water content of yolk and carcass was determined by first

drying at 65uC for 48 h and then at 105uC until a constant weight

was reached.

At ED 16, blood was taken from the chorioallantoic membrane

with a 1-mL syringe and 30 G needle and collected in tubes with

heparine (Sigma, Bornem, Belgium). At ED20 and at hatch, blood

was taken from the vena jugularis of the embryo or chick with a 1-

mL syringe and 27 G needle and collected in tubes with heparine

(Sigma, Bornem, Belgium). The blood was centrifuged at 1.5006g

for 10 min at 6uC. The plasma was collected and stored at 220uC
for later analyses of triiodothyronine (T3), thyroxine (T4),

corticosterone, lactate and glucose. Liver samples were taken

and snap frozen in liquid nitrogen before storage at 280uC.

Frozen liver tissue was homogenized by grinding into powder in

liquid nitrogen before use.

Hormones and Metabolites
Plasma analysis was performed on 15 samples per group per

sampling day for each measurement. Plasma T3 and T4

concentrations were measured by radio-immunoassay (RIA) as

described by [12]. The antisera for T3 and T4 were purchased

from Byk-Belga (Brussels, Belgium). Intra-assay coefficients of

variation are 4.5% and 5.4% for T3 and T4 respectively.

Corticosterone was measured with the Corticosterone Double

Antibody – 125I RIA Kit for Animal Testing (07120103, MP

Biomedicals, Carlsbad, California, USA). The intra-assay coeffi-

cient for corticosterone is 7.1%.

Plasma lactate was measured using a commercially available kit

(LAT8840, Ben S.r.l.-Biochemical Enterprise, Milan, Italy)

following the manufacturer’s instruction. The intra-assay coeffi-

cient for lactate is 2.3%. Plasma glucose concentration was

determined using a commercially available kit (298–65701,

WAKO Pure Chemical Industries Ltd., Osaka, Japan). The

absorbance was measured at 490 nm (Victor 1420 Multilabel

counter, PerkinElmer, MA, USA). The intra-assay coefficient for

glucose is 2.2%.
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Glycogen determination
For the determination of the hepatic glycogen content, a

method adapted from [13] was used. Tissue was homogenized in

exactly the same volume (mL) 7% HClO4 as mg tissue was taken.

Homogenates were centrifuged at 4uC at 14,000 g until a clear

supernatant was obtained. The supernatant was washed with

1 mL of petroleum ether and stored at 280uC. An iodine color

reagent [0.39 mL of an iodine solution (0.104 g I2, 1.04 g KI2 in

4 mL of milli-Q water) +30 mL of 10% CaCl2] was added to

standards or tissue extracts in a microtiter plate. After mixing and

an incubation period of 10 min, the absorbance was measured at

450 nm (Victor 1420 Multilabel counter, PerkinElmer, MA,

USA). Tissue glycogen concentration (n = 12) could then be

calculated using a standard curve of rabbit liver glycogen (Sigma,

Bornem, Belgium). Total glycogen content (ng) was calculated by

multiplying the glycogen concentration (ng/mg) with the wet

weight of the liver (mg).

Two-dimensional difference gel electrophoresis (2-D
DIGE)

The 2-D DIGE was performed as previously described [14].

The fluorescent cyanine dyes (Cy2, propyl-Cy3 and methyl-Cy5)

were synthesized as described previously [15,16] according to the

method by [17]. All other chemicals were purchased from GE

Healthcare, unless mentioned otherwise.

Protein lysates. 100 mg liver tissue taken at hatch (n = 6 per

group) was transferred to 500 mL ice-cold lysis buffer, containing

7 M urea, 2 M thiourea, 4% w/v CHAPS (Sigma-Aldrich), 1%

w/v DTT (Serva), 40 mM Tris base (ICN; Aurora), pH 8 and

Complete Protease Inhibitor Cocktail (Roche Diagnostics, Basel,

Switserland). Liver tissue was homogenized on ice, briefly

centrifuged at 13,000 rpm, sonicated (3 times 25 sec), followed

by a complete solubilization of the proteins for 1 h at room

temperature. The proteins were sonicated again briefly and

centrifuged for 20 min at 13,000 rpm at 4uC to precipitate cell

debris. The supernatant was dialyzed against milli-Q water for 2 h to

remove residual salt using a membrane with a 500-Da cutoff (Spectra/

Por, Biotech, Omnilabo) and aliquots were stored at 280uC. Protein

concentrations were determined with the Quant-iT Protein Assay kit

(Q33211, Invitrogen, Carlsbad, CA, USA) using the Qubit Fluorom-

eter 2.0 (Q32866, Invitrogen).

Analytical gels. Pre-cast Immobiline DryStrips (24 cm,

pH 3–11 nonlinear) were rehydrated overnight in DeStreak

Rehydration Solution containing 0.5% v/v immobilized pH

gradient (IPG) buffer in a reswelling tray covered with paraffin

oil (Merck). The next day 50 mg protein of each liver samples

(n = 6 per group) was randomLy labeled with either propyl-Cy3

(n = 3) or methyl-Cy5 (n = 3) dissolved in dimethylformamide

(DMF). The samples were incubated for 30 min on ice in the dark

to achieve minimal labeling of proteins with approximately

200 pmol dye and the highest signal-to-noise ratio and maximal

number of labeled spots. Labelling was terminated by addition of

1 mL lysine (10 mM; Merck) for 15 min on ice in the dark. Equal

fractions of all 18 samples were pooled and per gel 50 mg of this

pool was labeled with 200 pmol Cy2 dissolved in DMF to serve as

an internal standard. In total, 9 gels were run. The Cy2-, Cy3-,

and Cy5-labeled fractions were mixed together, and an equal

volume of lysis solution was added. Isoelectric focusing (IEF) was

performed in 24-cm long pre-cast Immobiline DryStrips over a pH

range of 3–11 (non-linear) on an Ettan IPGphor Cup Loading

Manifold system according to manufacturer’s instructions. Actual

run conditions were 300 V for 3 h, 600 V for 3 h, followed by a 6-

h gradient to 1000 V, a 3-h gradient to 8000 V, and 8 h at

8000 V for a total of 75–85 kVh (at 50 mA/strip). After IEF, the

strips were reduced with DTT (1% w/v) in equilibration buffer

(6 M urea, 34.5% v/v glycerol and 10% w/v SDS in Tris-HCl

buffer [1.5 M, pH 8.8]) for 15 min followed by alkylation with

4.5% w/v iodoacetamide (Sigma-Aldrich) in equilibration buffer

for 15 min. Electrophoresis of the IPG strips was done on 1.5-mm-

thick SDS-polyacrylamide gels (12.5% T; 2.6% C) in the Ettan

DALT twelve system for 30 min at 30 mA and 24 h at 15 mA/gel

at 13uC. The 2-D DIGE gel plates were rinsed with milli-Q water.

Image analysis. Gels were scanned with the Ettan DIGE

Imager (software 1.0; GE Healthcare) and generated gel image

triplets (Cy2, Cy3, and Cy5) comprising the CyDye-labeled

proteins. Quantitative analysis was carried out with the DeCyder

2D difference analysis software (Version 6.5; GE Healthcare). Spot

detection and matching was performed automatically with the

DeCyder Batch processor. For spot detection, the estimated

number of spots for each co-detection procedure was set to 2500.

The best internal standard image (Cy2 labeled samples) based on

the number of detected spots and overall similarity of the protein

spot pattern with that of other gels was assigned as the ‘‘Master’’

and used as a template. The matching was checked manually in

the biological variation analysis (BVA) module to ascertain the

accuracy of the match process. Volume ratios were calculated for

every spot on every gel by dividing the spot volume (Cy3 or Cy5),

by the spot volume of the internal standard (Cy2), thereby

correcting for inter-gel variations.

Preparative gels and protein identification. Two prepar-

ative gels were run under the same conditions as described above.

Each gel was loaded with 1.5 mg of protein from the pool sample,

from which only a 50 mg fraction was labeled with Cy3. Glass

plates were pretreated with BindSilane, and 2 reference markers

were applied to enable automatic spot picking. The preparative

gels were scanned in the Ettan DIGE Imager to obtain an image of

the Cy3 signal. Subsequently, the total protein load was visualized

by fluorescent LavaPurple Total protein stain according to the

manufacturer’s instructions (GelCompany, San Fransisco, Cali-

fornia, USA), and the gels were scanned again. Matching with the

analytical gels was carried out automatically with manual

correction by the BVA module of the DeCyder software. A pick

list of the proteins of interest was generated and imported into the

Spot Picker Version 1.20 software that controls the Ettan Spot

Picker (GE Healthcare, Little Chalfont, UK) and the relevant spots

were excised. All subsequent steps were carried out under a

laminar flow hood in dust-free conditions to prevent keratin

contamination of the samples. Identical spots from the two

preparative gels were pooled. Before tryptic digestion, the gel

pieces were thoroughly rinsed with milli-Q water, 50% v/v

acetonitrile (ACN) (Biosolve) and again with milli-Q water. After

drying in a SpeedVac vacuum centrifuge, they were incubated

overnight at 37uC in a 40 mL digestion solution containing 100 ng

modified porcine trypsin (sequencing grade, Promega, Fitchburg,

Wisconsin, USA), 25 mM NH4HCO3, and 5% v/v ACN. Tryptic

peptides were extracted from the gel pieces by 2 washing steps of

30 min in a bath sonicator. In the first step, a 100 mL solution of

5% v/v ACN and 0.5% formic acid (FA) (Riedel-de-Haën), and

the second step was carried out in a 50 mL solution containing

10% ACN and 0.5% FA. The supernatant was concentrated to a

volume of approximately 20 mL using SpeedVac vacuum centri-

fugation. Automated LC-MS analyses were run on an Ultimate

3000 Nano LC System (Dionex) coupled on-line to a microTOF-

Q mass spectrometer (Bruker Daltonics). The total volume of each

sample was pipetted in a polypropylene vial (Dionex, LC-Packings)

and loaded in the LC autosampler. 5 mL of this peptide solution

was transferred to the precolumn (C18 PepMap100 internal

diameter (i.d.) 300 lm 3 5 mm; Dionex, LC Packings) and reversed
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phase eluted over a 75 mm i.d.615 cm PepMap 100 C18

nanocolumn at a flow rate of 200 nL/min, using a linear gradient

from 5% to 40% of ACN/0.5% FA in 25 min. The column outlet

was coupled to the Q-TOF through a stainless steel needle at

2000 V. The ionized peptides in the range of 400–1400 m/z were

automatically selected and fragmented using predefined collision

energy profiles, depending on the detected peptide charge. LC-MS

data were processed using the Data Analysis software version 3.4

of Bruker Daltonics and submitted to the Mascot MS/MS ions

search engine using the same parameters. For protein identifica-

tion, the SwissProt 51.6 database (limited to Chordata) was used

and a 95% confidence interval threshold (P,0.05) was set. The

molecular function and subcellular location of these proteins were

examined using UNIPROT.

Identification of relevant canonical pathways. The list of

differentially expressed proteins was imported into the Ingenuity

Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA,

USA) to identify biological interactions between the proteins. The

biological interaction scores were defined by the IPA statistical

algorithm based on its knowledge base, and the P-value was

corrected for multiple comparisons with the Benjamini–Hochberg

test.

Quantitative real-time PCR
RNA extraction and reverse transcription. Total RNA

was extracted using 750 mL of TRIzol (Invitrogen, Paisley, UK)

added to approximately 50 mg of crushed liver sample taken at

hatch (n = 8 per group), and incubated for 5 min at room

temperature. 300 mL of chloroform (Sigma Aldrich, Missouri,

USA) was added to create a phase separation. After a short vortex

step, the samples were centrifuged at 14,000 rpm for 15 min at

4uC. The aqueous phase was transferred to fresh tubes, mixed with

375 mL ice-cold isopropanol (Prolabo, VWR, West Chester,

Pennsylvania, USA) and incubated for 10 min at room temper-

ature. After centrifugation (14,000 rpm, 10 min, 4uC), the

supernatant was discarded and the remaining RNA pellet was

washed with 750 mL ice-cold 70% ethanol (Prolabo, VWR, West

Chester, Pennsylvania, USA). After a final centrifugation step

(7,500 rpm, 5 min, 4uC), the supernatant was carefully removed

and the remaining RNA pellet was dissolved in 1:1000 DEPC-

treated water (Fluka). The RNA concentration and quality (260/

280 ratio) was measured using UV-spectroscopy (Implen, West-

burg, Leusden, The Netherlands). The integrity of the RNA was

electrophoretically verified using 2% agarose (Sigma Aldrich,

Missouri, USA) gel electrophoresis and Midori Green DNA Stain

(MG02, NIPPON Genetics Europe GmbH, Dueren, DE).

The RNA was transcribed into cDNA using the Reverse

Transcription system (A3500, Promega, Madison, WI, USA).

Denaturation was performed for 3 min at 80uC followed by

45 min at 42uC for the reverse transcription. The reaction was

stopped by heating the samples for 5 min at 95uC.

Primer design. The intron-spanning primers for the differ-

ent genes were designed using Primer Designing Tool (NCBI).

The primers were purchased from IDT (Integrated DNA

Technologies Inc., Coralville, Iowa, USA). In table 1, all primers

are listed, both for reference genes and the genes of interest. For

every pair of primers used, standard curves were made and PCR

efficiencies were calculated according to the following formula:

PCR efficiency = 21+1021/slope [18]. A PCR efficiency between

90% and 110% is generally considered acceptable, with correla-

tion coefficient .0.99. Final primer concentration was 0.3 mM for

all primer pairs.

qRT-PCR. Quantitative real-time PCR (qRT-PCR) measure-

ments were performed in duplicate using the ABI StepOnePlus

(Applied Biosystems, Carlsbad, USA) and Maxima SYBR Green/

ROX qPCR Master Mix (2x, Fermentas Life Sciences, St. Leon-

Rot, Germany). 1 mL of 1:2 diluted cDNA was used as input in

25 mL reaction. The PCR reaction program began with 10 min

heating at 95uC followed by 40 cycles of 15 seconds at 95uC and

60 seconds at 60uC. For the analysis of the qRT-PCR output, the

22DDCT method of relative quantification was used [19].

Expression of genes was normalized to the geometric average of

the two references genes: b-actine (ACTB) and peptidylprolyli-

somerase D (PPID). In addition, a melting curve analysis was

performed to check the specificity of the primers (15 seconds at

95uC, 1 minute at 60uC, temperature gradually increased by

0.3uC until 95uC is reached).

Statistical Analysis
All data were processed with the statistical software package

SAS version 9.2 (SAS Institute Inc., Cary, NC). A GLM was used

to analyse the effect of treatment (control, sham and albumen-

deprived group), age (ED 16, ED 20 and at hatch) and their

interaction on the measured parameters: absolute and relative

YFBW and residual yolk weight, water content of the residual yolk

and carcass, absolute and proportional liver, digestive tract and

heart weight, plasma T3, T4, corticosterone, glucose and lactate

concentrations. The liver glycogen content, logarithms of the

volume ratios (Cy3/Cy2 or Cy5/Cy2) of the protein spots of 2-D

DIGE and the fold change of phosphoenolpyruvate carboxykinase

1 (PCK1) and 2 (PCK2), fructose-1,6-bisphosphatase 1 (FBP1) and

3-hydroxyisobutyrate dehydrogenase (HIBADH) were analysed

using the one-way ANOVA with treatment as variable. When

there was a significant overall effect of treatment, or interaction

with age, the means were further compared by a post-hoc Tukey’s

test. Survival rate, early, mid and late embryonic mortality, and

infertility were analyzed using the logistic regression model with

treatment as the classification variable. For all parameters, a

degree of significance of 5% was used. All data are shown as mean

6 SEM.

Results

Survival and mortality
Survival until hatch (Table 2) differed between all three

experimental groups. The albumen-deprived group had a lower

survival compared to both the control (P,0.001)) and the sham

group (P,0.001). Furthermore, the survival was also reduced in

the sham group compared to the control group (P = 0.001). The

albumen-deprived group had a higher early mortality (Table 2)

than the control group (P,0.001), with the sham group being

intermediate and different from both the control (P,0.001) and

the albumen-deprived group (P,0.001). No differences between

treatments were found for the mid or late mortality (Table 2).

Infertility was similar in all treatments (Table 2).

Yolk-free body and residual yolk weight
The absolute and relative (to egg weight at ED1) YFBW and

residual yolk weight (Table 3) were only affected by age (P,0.001)

but not by treatment or the interaction. The water content of the

yolk (Table 3) however, was affected by treatment (P = 0.016), but

not by age or the interaction. The albumen-deprived group had a

lower water content of the yolk compared with the control group

(P = 0.012), whereas the sham group was not different from either

the control or the albumen-deprived group.
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Body composition
Only age had an effect on the absolute liver, absolute carcass,

absolute and proportional digestive tract and absolute and

proportional heart weight (data not shown). The proportional

liver (to YFBW) weight, however, was affected by age (P,0.001)

and almost by treatment (P = 0.057), but not by the interaction.

The albumen-deprived chicks had a numerically lower propor-

tional liver weight (2.0060.03%) than the control (2.1060.04%)

and the sham group (2.0860.04%). The proportional carcass

weight was affected by treatment (P = 0.024), age (P,0.001) and

the interaction (P = 0.026). At hatch, the albumen-deprived chicks

had a higher proportional carcass weight (84.060.3 g) than the

control (82.160.4 g, P = 0.032) and the sham group (82.160.4 g,

P = 0.034). The water content of the carcass was affected both by

age (P,0.001) and treatment (P = 0.017). The albumen-deprived

chicks had a higher water content of the carcass (82.260.3%) than

the control chicks (81.360.3%, P = 0.014), whereas the sham

group (81.660.3%) was not different from both other groups.

Plasma hormones and metabolites and liver glycogen
Only an effect of age (P,0.001) was observed on the plasma T3

concentrations, with concentrations increasing with age

(Figure 1A). The plasma T4 levels (Figure 1B) were affected by

treatment (P = 0.033), age (P,0.001) and the interaction

(P = 0.001). On ED20, the albumen-deprived group had lower

T4 levels than the control group (P,0.001). Corticosterone levels

were not influenced by age, treatment or the interaction (data not

shown). Glucose and lactate levels were only affected by age (P,

0.001, data not shown). The glycogen content of the liver (Figure 2)

had an effect of age (P,0.001) but not of treatment or the

interaction.

Screening for differential proteins in liver samples at
hatch using 2-D DIGE

Of the approximately 1400 spots present on the gels (Figure 3),

15 spots were affected by treatment (P,0.05). Spots exhibiting

differences between the control and the sham group were

excluded, as these differences are induced by the manipulation

of the egg and not the prenatal undernutrition effect. Only the

spots for which the expression in the albumen-deprived group

differed from the control group (4 spots), the sham group (1 spot)

or both (3 spots) were selected for identification by mass

spectrometry. Table 4 shows the proteins that were identified in

each of the spots. Four of these protein spots were upregulated,

Table 1. List of primers used for quantification of the genes of interest and reference genes.

Gene Accession number 59-primer-39 Tm (6C) Size (bp) Efficiency (%)

PCK2 NM_205470 F GGCCGAGCACATGCTGATTT 61.7 62 102.7

R CCGCCATGTAACGCTTCTCA 60.7

PCK1 NM_205471 F GGAAGTAGCCAGCTGGGTCGC 59.5 91 105.1

R TTGTGCGTCCTTGCATGCAGC 59.1

FBP1 NM_001278048 F TGCTGCGGTCACCGAGTATCTCA 59.8 56 95.6

R GCGAACTGCCGTCCTCAGGG 59.8

HIBADH NM_001006362 F CCTGGGTGCTCAGGTAACAG 60.0 84 99.4

R TTGGGACTTGAAGGCAGCAT 59.9

ACTB NM_205518 F TCGCCCCAGACATCAGGGTGTGA 61.5 75 103.3

R TTGCTCTGGGCTTCATCACCAACGT 60.9

PPID XM_426283 F GTCGCACCCGTCCCCTGTAGA 60.0 93 101.8

R ATTCGTCCAACTCGCTCTCCCC 58.4

For every gene the NCBI accession number, the sequences and the theoretical melting temperature (Tm, uC) of the forward (F) and reverse primer (R), the size of the
amplified fragment (bp) and the efficiency of amplification (%) are provided.
doi:10.1371/journal.pone.0094902.t001

Table 2. Survival percentage (%), early, mid and late mortality (%) and infertility (%) of the eggs of the control, sham and albumen-
deprived group.

Item (%) control sham albumen-deprived P-value

Survival 87.7a 69.3b 38.1c ,0.001

Early mortality 7.0a 25.4b 55.7c ,0.001

Mid mortality 0.0 0.0 0.5 NS

Late mortality 5.3 5.3 5.7 NS

Infertility 2.6 4.2 2.3 NS

Number of fertile eggs in control (n = 144), sham (n = 144) and albumen-deprived group (n = 240).
a–cWithin a row, treatment means with different superscript are significantly different (P,0.001). P-values of effect of treatment are added in a separate column.
Survival (%) = (number of hatched chicks/number of fertile eggs)*100
Mortality (%) = (number of dead eggs/number of fertile eggs)*100
Infertility (%) = (number of infertile eggs/total number of set eggs) *100
doi:10.1371/journal.pone.0094902.t002
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while 4 were downregulated in the liver of albumen-deprived

chicks. Key metabolic pathways and protein networks affected by

the treatment of prenatal protein undernutrion by albumen

removal in the chicken were identified by systems biology analysis

using Ingenuity Pathways analysis (IPA) software. Relevant

pathways are listed in Table 5. Several of these pathways are

involved in the degradation of amino acids such as valine,

methionine, cysteine and glutamate. Moreover, pathways direct or

indirect involved in the glucose metabolism are also apparent:

glycolysis/gluconeogenesis, tricarboxylic acid cycle (TCA) and

fermentation of pyruvate to lactate. Finally, activation of TR/

RXR (thyroid and retinoid X receptor) and FXR/RXR (farnesoid

X receptor, retinoid X receptor, cholesterol homeostasis) were

detected.

Gene expression of PCK1, PCK2, FBP1 and HIBADH
To investigate if differences in gene expression might cause the

difference in protein abundance, several proteins were selected

and the mRNA expression was examined. No effect of treatment

could be detected on the gene expression of PCK1, PCK2,

HIBADH or FBP1 (Table 6), although a trend was observed

towards decreased expression of FBP1 (P = 0.094). The expression

of FBP1 in the liver of albumen-deprived chicks at hatch tended to

be reduced compared to the control or sham chicks.

Discussion

Our previous study demonstrated the existence of long-term

effects of prenatal protein undernutrition by albumen removal on

the body weight and reproduction performance of laying hens [9].

According to the ‘fetal origins’ hypothesis’ [5], it is the conflict

between prenatal environment (i.e. reduced protein availability)

and the postnatal conditions (i.e. adequate protein levels) that

causes disease and malfunction in later life. Indeed, by restricting

the nutrient supply during the prenatal period, the fetus adapts to

a low nutrient environment and makes metabolic adaptations to

survive. However, when nutrition is adequate or overabundant in

the postnatal life, a conflict between the programming and the

postnatal conditions arises. The objective of the present study was

to investigate if the chicken model of prenatal protein undernu-

trition by albumen removal already displays metabolic program-

ming effects during the late embryonic period until hatch (before

access to feed), before the conflict is created.

Effects on YFBW and body composition were examined as

phenotypic parameters. In the current study, the equal absolute

and relative YFBW and yolk weight together with a lower water

content of the yolk (and hence higher weight of dry matter in the

yolk) of the albumen-deprived chicks, would suggest a lower

utilisation of solids to obtain an equal body weight. In contrast,

results from [9] implied a higher consumption of the available yolk

by the albumen-deprived group to support an equal embryonic

growth until hatch. This discrepancy is remarkable, however, the

higher water content of the carcass (and hence less solids in the

carcass) is in agreement with increased amount of solids remaining

in the yolk, as less were used to synthesize tissue. In addition, no

differences in body composition was observed in the albumen-

deprived chicks except for a marginally lower proportional liver

weight together with an equal YFBW and reduced carcass weight.

These results are in agreement with the ‘fetal origins’ hypothesis’

[5]. Since these investigations are focused on the perinatal period,

no conflict between the prenatal prenatal (i.e. reduced protein

availability) and postnatal environment (i.e. adequate protein

levels) has emerged.T
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The metabolic programming effect was examined by screening

for differences in hepatic proteome at hatch. Four proteins spots

were upregulated, whereas 4 others were downregulated in the

albumen-deprived chicks. To investigate the biological significance

of these results, the IPA software was implemented to identify key

canonical pathways. As expected, several pathways involved in the

catabolism of amino acids such as valine, methionine, cysteine and

glutamate were enriched in our dataset. Downregulation of

mitochondrial 3-hydroxybutyrate dehydrogenase (HIBADH) and

upregulation of dihydrolipoyl dehydrogenase (DLD) was detected.

These enzymes are involved in the degradation of branched-chain

amino acids such as valine, leucine and isoleucine. HIBADH

converts 3-hydroxy-2-methylpropanoate to 2-methyl-3-oxopro-

panoate, whereas DLD is a component of several enzyme

complexes such as the branched chain a-keto acid dehydrogenase

involved in the catabolism of leucine, isoleucine and valine.

Cystathionine gamma-lyase (CTH) was upregulated and is

involved in the last step in the trans-sulfuration pathway from

methionine to cysteine and can be both involved in the

degradation of methionine and cysteine. Finally, upregulated

glutamate dehydrogenase 1 (GLUD1) is involved in the biosyn-

thesis or catabolism of glutamate and catalyzes the oxidative

deamination of glutamate to 2-ketoglutarate which is an important

intermediate in the TCA cycle. The observed increase in amino

Figure 1. Plasma thyroid hormones. T3 (A) and T4 (B) concentrations (ng/mL) of the control, sham and the albumen-deprived chicks at embryonic
day (ED) 16, ED 20 and at hatch (n = 15). Data are shown as mean 6 SEM.a–b Treatment means differ per timepoint (P,0.05).
doi:10.1371/journal.pone.0094902.g001
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acids catabolism may be necessary to compensate for the lack of

energy available caused by the embryonic undernutrition. As the

albumen removal decreased the protein availability at the end of

the incubation, changes in the expression of enzymes involved in

amino acid metabolism could be foreseen. Indeed, a previous

study also found indications of an altered protein metabolism in

broilers treated by albumen removal before incubation, suggesting

a transient increase in muscle proteolysis [8].

Metabolic programming caused by prenatal protein undernu-

trition was revealed by the observed hepatic proteome changes

related with glucose metabolism. Upregulation of L-lactate

dehydrogenase B chain (LDHB) suggests an increased conversion

of pyruvate to lactate in the absence of oxygen in the liver. This

lactate can subsequently be converted to glucose by the

gluconeogenesis. Two of the regulatory enzymes of the latter

pathway were dysregulated in the liver. Fructose-1,6-bipho-

sphatase 1 (FBP1) was downregulated, whereas phosphoenolpyr-

uvate 2 (PCK2) was upregulated. FBP1 catalyzes the conversion of

D-fructose-1,6-biphosphate to D-fructose-6-phosphate, whereas

PCK2 catalyzes the conversion of oxaloacetate to phosphoenol-

pyruvate, the rate-limiting step. Upregulated a-enolase (ENO1) is

also involved in both the gluconeogenesis and glycolysis and

catalyzes the conversion of 2-phospho-D-glycerate to phospho-

enolpyruvate. In addition, glucose transporter 1 (GLUT1), a

facilitative low capacity/high affinity glucose transporter across the

plasma membrane was upregulated. Hepatic GLUT1 is primarily

involved in cellular uptake of glucose from the plasma into the

hepatocytes when nutrients are in reduced supply [20]. As no

differences in plasma glucose or lactate levels were found, it is not

clear whether the gluconeogenesis pathway in general is up- or

downregulated.

Furthermore, a general upregulation of the TCA pathway was

observed, from the upregulation of several enzymes involved such

as DLD, aconitate hydratase (ACO2) and malate dehydrogenase 1

(MDH1). DLD is a component of the pyruvate dehydrogenase

complex, which converts pyruvate, originating from the break-

down of carbohydrates to acetyl-CoA, the input for the TCA

cycle. ACO2 catalyzes the isomerization of citrate to isocitrate via

cis-aconitate, and MDH1 the conversion of malate to oxaloace-

tate. As previously stated, upregulation of GLUD1 leads to

increased production of 2-ketoglutarate, an important intermedi-

ate of the TCA cycle. Upregulation of the TCA cycle leads to an

increase in energy generation from the oxidation of acetate,

derived from carbohydrates, fat and proteins.

As synthesis and degradation of glycogen are vital for

embryonic survival during the last phase of incubation [21],

glycogen levels were determined in liver, the most metabolically

active tissue of the embryo. Although no significant effects of

treatment or an interaction with age could be observed, the

albumen-deprived chicks had lower hepatic glycogen content at

hatch as compared to both the control and the sham group,

suggesting that the released glucose can be distributed to extra-

Figure 2. Glycogen in the liver. Hepatic glycogen content (ng) of the control, sham and the albumen-deprived chicks at embryonic day (ED) 16,
ED 20 and at hatch (n = 12). Data are shown as mean 6 SEM.
doi:10.1371/journal.pone.0094902.g002

Figure 3. Hepatic proteome of the newly-hatched chick.
Visualization of the total number of spots in the hepatic proteome of
the newly-hatched chick on a Cy2 image (pooled sample) of an analytic
two-dimensional gel electrophoresis (2-D DIGE) gel.
doi:10.1371/journal.pone.0094902.g003

Hepatic Proteome Change by Prenatal Undernutrition

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94902



T
a

b
le

4
.

Id
e

n
ti

fi
ca

ti
o

n
w

it
h

LC
-M

S/
M

S
o

f
th

e
p

ro
te

in
s

p
re

se
n

t
in

th
e

4
u

p
re

g
u

la
te

d
an

d
4

d
o

w
n

re
g

u
la

te
d

sp
o

ts
in

th
e

liv
e

r
o

f
al

b
u

m
e

n
-d

e
p

ri
ve

d
ch

ic
ks

at
h

at
ch

co
m

p
ar

e
d

to
e

it
h

e
r

th
e

co
n

tr
o

l
ch

ic
ks

o
r

th
e

sh
am

ch
ic

ks
o

r
b

o
th

(n
=

6
).

G
e

n
e

F
u

ll
n

a
m

e
S

p
o

t
U

n
ip

ro
t

ID
p

I
M

a
ss

(k
D

a
)

M
a

sc
o

t
S

co
re

Q
u

e
ri

e
s

C
o

v
e

ra
g

e
(%

)
L

o
ca

ti
o

n
co

n
tr

o
l

sh
a

m
a

lb
u

m
e

n
-

d
e

p
ri

v
e

d
P

-v
a

lu
e

U
P

H
SP

A
9

St
re

ss
-7

0
p

ro
te

in
,

m
it

o
ch

o
n

d
ri

al
p

re
cu

rs
o

r
4

0
7

Q
5

Z
M

9
8

6
.0

9
7

3
,2

1
8

8
5

1
0

M
t

1
.0

0
6

0
.0

9
b

1
.1

0
6

0
.0

7
a

b
1

.4
4
6

0
.1

2
a

0
.0

1
0

A
LB

Se
ru

m
al

b
u

m
in

P
1

9
1

2
1

5
.5

1
6

9
,9

1
4

5
1

6
2

6
P

l

H
SP

A
2

H
e

at
sh

o
ck

7
0

kD
a

p
ro

te
in

P
0

8
1

0
6

5
.5

2
6

9
,8

1
3

7
4

9
C

s

A
LB

Se
ru

m
al

b
u

m
in

4
3

9
P

1
9

1
2

1
5

.5
1

6
9

,9
8

8
1

2
P

l
1

.0
0
6

0
.1

1
b

1
.0

4
6

0
.0

7
a

b
1

.3
8
6

0
.1

4
a

0
.0

3
5

P
C

K
2

P
h

o
sp

h
o

e
n

o
lp

yr
u

va
te

ca
rb

o
xy

ki
n

as
e

2
2

3
2

P
2

1
6

4
2

7
.5

6
7

1
,1

3
6

4
1

0
1

6
M

t
1

.0
0
6

0
.0

5
b

1
.1

2
6

0
.0

4
a

b
1

.2
8
6

0
.0

9
a

0
.0

2
1

LM
N

A
La

m
in

-A
P

1
3

6
4

8
6

.5
0

7
3

,2
1

1
3

2
3

M
t,

N
u

EN
O

1
A

lp
h

a-
e

n
o

la
se

1
P

5
1

9
1

3
6

.1
7

4
7

,3
1

1
2

3
1

0
C

p

T
U

FM
El

o
n

g
at

io
n

fa
ct

o
r

T
u

P
8

4
1

7
2

8
.9

8
3

8
,3

5
2

1
3

M
t

M
D

H
1

M
al

at
e

d
e

h
yd

ro
g

e
n

as
e

1
Q

5
Z

M
E2

6
.9

2
3

6
,5

3
6

1
3

C
p

A
C

O
2

A
co

n
it

at
e

h
yd

ra
ta

se
1

2
7

4
Q

8
A

Y
I3

8
.0

4
8

5
,8

2
6

1
6

9
M

t
1

.0
0
6

0
.0

3
b

1
.0

1
6

0
.0

2
b

1
.1

2
6

0
.0

4
a

0
.0

1
0

D
LD

D
ih

yd
ro

lip
o

yl
d

e
h

yd
ro

g
e

n
as

e
1

Q
5

Z
M

3
2

8
.1

9
5

4
.0

1
3

8
6

1
4

M
t

G
LU

D
1

G
lu

ta
m

at
e

d
e

h
yd

ro
g

e
n

as
e

1
P

0
0

3
6

8
8

.4
8

5
5

,7
6

5
4

1
2

M
t

A
LB

Se
ru

m
al

b
u

m
in

1
P

1
9

1
2

1
5

.5
1

6
9

,9
6

9
1

3
P

l

P
C

K
2

P
h

o
sp

h
o

e
n

o
lp

yr
u

va
te

ca
rb

o
xy

ki
n

as
e

P
2

1
6

4
2

7
.5

6
7

1
,1

5
9

1
2

M
t

C
T

H
C

ys
ta

th
io

n
in

e
g

am
m

a-
ly

as
e
1

E1
B

Y
F1

6
.8

5
4

3
,9

5
1

1
3

C
p

G
LU

T
1

So
lu

te
ca

rr
ie

r
fa

m
ily

2
,

fa
ci

lit
at

e
d

g
lu

co
se

tr
an

sp
o

rt
e

r
m

e
m

b
e

r
1

P
4

6
8

9
6

8
.8

2
5

4
,1

4
2

2
1

C
m

SM
A

D
3

M
o

th
e

rs
ag

ai
n

st
d

e
ca

p
e

n
ta

p
le

g
ic

h
o

m
o

lo
g

3
P

8
4

0
2

3
6

.7
0

4
8

,3
3

7
1

3
C

p
,

N
u

LD
H

B
L-

la
ct

at
e

d
e

h
yd

ro
g

e
n

as
e

B
ch

ai
n

P
0

0
3

3
7

7
.0

7
3

6
,3

3
6

1
3

C
p

D
O

W
N

R
P

LP
0

6
0

S
ac

id
ic

ri
b

o
so

m
al

p
ro

te
in

P
0
1

1
0

3
3

P
4

7
8

2
6

5
.7

1
3

4
,3

4
2

1
3

R
b

1
.0

0
6

0
.0

7
a

b
1

.0
4
6

0
.0

9
a

0
.7

8
6

0
.0

7
b

0
.0

5
0

FB
P

1
Fr

u
ct

o
se

-1
,6

-b
is

p
h

o
sp

h
at

as
e

1
1

1
0

4
5

Q
9

I8
D

4
5

.2
2

1
8

,2
8

1
3

7
C

p
1

.0
0
6

0
.1

0
a

0
.8

9
6

0
.0

8
a

b
0

.6
3
6

0
.1

2
b

0
.0

3
6

H
IB

A
D

H
3

-h
yd

ro
xy

is
o

b
u

ty
ra

te
d

e
h

yd
ro

g
e

n
as

e
1

1
1

2
6

Q
5

Z
LI

9
8

.6
0

3
5

,3
4

2
1

1
0

1
6

M
t

1
.0

0
6

0
.1

0
a

0
.9

9
6

0
.0

6
a

0
.5

8
6

0
.1

4
b

0
.0

1
1

T
ST

T
h

io
su

lf
at

e
su

lf
u

rt
ra

n
sf

e
ra

se
1

1
3

5
P

2
5

3
2

4
6

.5
6

3
2

,3
9

2
7

1
5

M
t

1
.0

0
6

0
.2

0
a

1
.1

6
6

0
.1

6
a

0
.4

2
6

0
.1

6
b

0
.0

0
7

T
h

e
sp

o
t

n
u

m
b

e
r

(S
p

o
t)

,U
n

ip
ro

t
ac

ce
ss

io
n

n
u

m
b

e
r

(U
n

ip
ro

t
ID

),
th

e
o

re
ti

ca
l

is
o

-e
le

ct
ri

c
p

o
in

t
(p

I)
,t

h
e

o
re

ti
ca

l
m

o
le

cu
la

r
w

e
ig

h
t

(M
as

s)
,M

as
co

t
sc

o
re

,n
u

m
b

e
r

o
f

m
at

ch
e

d
p

e
p

ti
d

e
s

(Q
u

e
ri

e
s)

an
d

se
q

u
e

n
ce

co
ve

ra
g

e
(C

o
ve

ra
g

e
)

ar
e

sh
o

w
n

.T
h

e
ce

llu
la

r
lo

ca
liz

at
io

n
(L

o
ca

ti
o

n
)

is
al

so
in

d
ic

at
e

d
:C

m
=

ce
ll

m
e

m
b

ra
n

e
,C

p
=

cy
to

p
la

sm
,

C
s

=
ce

ll
su

rf
ac

e
,M

t
=

m
it

o
ch

o
n

d
ri

a,
N

u
=

n
u

cl
e

u
s,

P
l

=
p

la
sm

a
an

d
R

b
=

R
ib

o
so

m
e

.T
h

e
m

e
an

fl
u

o
re

sc
e

n
ce

(C
y3

o
r

C
y5

)
o

f
th

e
d

if
fe

re
n

t
sp

o
ts

n
o

rm
al

iz
e

d
ac

co
rd

in
g

to
th

e
fl

u
o

re
sc

e
n

ce
si

g
n

al
o

f
th

e
p

o
o

le
d

sa
m

p
le

(C
y2

)
6

SE
M

ar
e

sh
o

w
n

in
th

e
ta

b
le

fo
r

th
e

co
n

tr
o

l,
sh

am
an

d
al

b
u

m
e

n
-d

e
p

ri
ve

d
ch

ic
ks

.a
–

b
W

it
h

in
a

ro
w

,t
re

at
m

e
n

t
m

e
an

s
w

it
h

d
if

fe
re

n
t

su
p

e
rs

cr
ip

t
ar

e
si

g
n

if
ic

an
tl

y
d

if
fe

re
n

t
(P

,
0

.0
5

).
P

-v
al

u
e

s
o

f
e

ff
e

ct
o

f
tr

e
at

m
e

n
t

ar
e

ad
d

e
d

in
a

se
p

ar
at

e
co

lu
m

n
.

M
o

st
o

f
th

e
id

e
n

ti
fi

e
d

sp
o

ts
co

n
ta

in
e

d
ju

st
o

n
e

p
ro

te
in

,
b

u
t

se
ve

ra
l

e
n

cl
o

se
d

m
u

lt
ip

le
p

ro
te

in
s.

O
n

th
e

o
th

e
r

h
an

d
,

so
m

e
p

ro
te

in
s

w
e

re
p

re
se

n
t

in
m

o
re

th
an

o
n

e
sp

o
t.

P
o

rc
in

e
tr

yp
si

n
e

w
as

ad
d

e
d

fo
r

fr
ag

m
e

n
ta

ti
o

n
b

e
fo

re
LC

-M
S/

M
S

an
d

th
is

w
as

co
n

se
q

u
e

n
tl

y
id

e
n

ti
fi

e
d

in
th

e
sa

m
p

le
s

b
u

t
th

is
w

as
o

m
it

te
d

fo
r

cl
ar

it
y.

1
H

o
m

o
lo

g
o

u
s

p
ro

te
in

w
as

id
e

n
ti

fi
e

d
in

d
if

fe
re

n
t

sp
e

ci
e

s,
b

u
t

re
su

lt
s

ar
e

al
w

ay
s

d
is

p
la

ye
d

fo
r

th
e

ch
ic

ke
n

(G
a

llu
s

g
a

llu
s)

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
4

9
0

2
.t

0
0

4

Hepatic Proteome Change by Prenatal Undernutrition

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e94902



hepatic tissue or be used as an energy source in the liver. The

variation in glycogen content between individual chicks, however,

was very high, but since chicks were randomly selected for

sampling, individual chicks may exhibit different hatch times and

it is known that time of hatching has an impact on hepatic

glycogen content [22]. Reduced liver glycogen content at hatch

can be caused by either an increased use of glycogen during the

hatching process or a decreased build-up of glycogen before hatch,

although the latter is not likely since no differences in glycogen

content were detected at ED20. It seems that the albumen-

deprived chicks had to degrade more of the hepatic glycogen

content, needed as energy source during the energy demanding

hatching process [21].

Interestingly, several of the affected proteins are involved in

glucocorticoid receptor (GR) signaling. Glucocorticoid hormones

have a central role in the regulation of the glucose metabolism and

bind to the GR, which is a transcription factor for regulating gene

expression. In sheep, glucocorticoid receptor expression is

increased in the liver of neonatal offspring born to ewes which

were nutrient restricted during early-mid-gestation [23]. Offspring

of rat dams that were protein-restricted throughout gestation had

increased glucocorticoid receptor protein and mRNA expression

in liver during fetal and postnatal life [24,25]. The GR was not

identified amongst the upregulated proteins, yet may not appear in

a 2-D DIGE gel due to its membrane location. However, several

proteins involved in GR signaling were upregulated. The level of

plasma corticosterone, an important glucocorticoid in birds,

however, was not affected in our model.

An upregulation of ENO1 and GLUT1 can be associated with

increased TR/RXR activation. The thyroid hormone receptor

(TR) is usually found as a heterodimer with RXR (retinoid X

receptor) and regulates gene expression. Thyroid hormones are

involved in a range of biological processes such as growth,

development and metabolism. Plasma thyroid hormone concen-

trations, both T3 and T4, are reference measurements for

evaluating the level of metabolism of the embryos [26]. Plasma

T3 concentrations, the biologically active form of thyroid

hormone, however, did not differ between groups, although the

T4 concentrations at ED20 were significantly lower for the

albumen-deprived embryos as compared to the control, indicating

a decreased metabolism. The sham embryos had an intermediate

plasma T4 value.

Some of the affected proteins (i.e. GLUT1, FBP1 and PCK2)

have previously been associated with effects of prenatal protein

undernutrition in mammalian models and will be discussed in

more detail.

The GLUT proteins are a family of facilitative transport

proteins, catalyzing glucose uptake across the plasma membrane,

the rate-limiting step in glucose metabolism. In mammals, GLUT1

is expressed ubiquitously and facilitates the basal glucose uptake,

which is essential for growth and development in most cells [27].

Expression of GLUT1 has previously been examined in other

mammalian models of prenatal undernutrition, but no differences

could be detected [28,29]. Chickens exhibit a peculiar glucose

transport and glucose homeostasis, since they are lacking GLUT4,

the major insulin-responsive transporter [30]. The mechanism for

regulation of blood glucose concentration in chickens is not well

understood. Furthermore, no information is available on the roles

of the chickens GLUT isoforms in relation to glucose metabolism.

Most likely, GLUT1 will act in maintaining basal glucose

transport in most chicken cell types as in mammals, however the

precise function of GLUT1 in the chicken remains to be

elucidated [27].

Chickens maintain an elevated level of blood glucose (10 mM),

which is supported by high rates of gluconeogenesis. In the present

study, prenatal protein undernutrition caused an increase in PCK2

protein abundance, as opposite to the decreased FBP1 protein

abundance and the decreased glycogen content. The liver

glycogen content has previously been shown to change in a

reciprocal way to the cytosolic PCK activity [31]. Indeed, there

Table 5. Identification of relevant canonical pathways affected by albumen removal by grouping of the differential expressed
proteins through the use of Ingenuity Pathway Analysis (IPA).

Molecules B-H P-value Ratio

Ingenuity canonical pathways

TCA cycle II ACO2, DLD, MDH1 3.55E-04 3/41

Gluconeogenesis I ENO1, FBP1, MDH1 3.55E-04 3/48

Glucocorticoid receptor signaling PCK2, SMAD3, HSPA9, HSPA2 2.57E-03 4/299

Valine Degradation I HIBADH, DLD 8.13E-03 2/35

Glycolysis I ENO1, FBP1 8.51E-03 2/41

Superpathway of Methionine Degradation DLD, CTH 1.82E-02 2/64

TR/RXR Activation ENO1, GLUT1 2.88E-02 2/109

FXR/RXR Activation PCK2, FBP1 2.88E-02 2/110

L-cysteine degradation II CTH 2.88E-02 1/5

Glutamate Biosynthesis/Degradation X GLUD1 2.95E-02 1/7

Pyruvate Fermentation to Lactate LDHB 2.95E-02 1/9

IPA-analysis (www.ingenuity.com) was used to identify key biological pathways comprising the differentially identified proteins after prenatal protein undernutrition by
albumen removal in chicken. The significance of the canonical pathways was tested by the stringent Benjamini-Hochberg (B-H) multiple testing correction method. The
ratio indicates the number of differential proteins in a given pathway divided by the total number of molecules that make up that pathway. The following proteins,
annotated with their gene names, are included in the canonical pathways. Abbreviations: ACO2 (Aconitate hydratase); CTH (Cystathionine gamma-lyase); DLD
(Dihydrolipoyl dehydrogenase); ENO1 (Alpha-enolase); FBP1 (Fructose-1,6-bisphosphatase 1); GLUD1 (Glutamate dehydrogenase 1); GLUT1 (Solute carrier family 2,
facilitated glucose transporter member 1); HIBADH (3-hydroxyisobutyrate dehydrogenase); HSPA2 (Heat shock 70 kDa protein); HSPA9 (Stress-70 protein, mitochondrial
precursor); LDHB (L-lactate dehydrogenase B chain); MDH1 (Malate dehydrogenase); PCK2 (Phosphoenolpyruvate carboxykinase); SMAD3 (Mothers against
decapentaplegic homolog 3).
doi:10.1371/journal.pone.0094902.t005
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are two forms of PCK found in most species, differing in their

cellular localization: cytosolic PCK1 and mitochondrial PCK2.

The relative abundance of both isoforms is dependent on the

animal species and the growth stage of the animal (review [32]). In

the avian liver, the mitochondrial PCK activity is the most

abundant one but during the perinatal period the cytosolic PCK

activity increased considerable from a few days before hatching to

4 days after hatching [31]. As PCK1 is the most abundant form in

rats and has been linked previously with effects of prenatal protein

undernutrition, the expression of both PCK1 and PCK2 was

measured. Both genes were present in similar amounts in the liver

at hatch, but were not influenced by the applied treatment.

Rats and mice have been used extensively to examine the effects

of the maternal diet on the programming of the progeny. In rat

dams fed a protein-restricted diet an increase in PCK1 mRNA and

increased activity was detected in liver of the progeny until 11

months of age, suggesting that programming of the metabolism

also extends to the regulation of gene expression [33]. In the

offspring of intrauterine growth retarded rats by uteroplacental

insufficiency, the hepatic expression of both PCK1 and FBP1 were

increased [34]. A persistent increase in the gene expression of

hepatic PCK, catalyzing the first, committed step of gluconeo-

genesis, leads to reduced ability of insulin to suppress hepatic

glucose output, a change which is characteristic of type 2 diabetes

[33]. Conversely in mink, it has been shown that feeding a low

protein diet to the dam reduced the FBP1 mRNA expression in

the liver of the offspring. The expression of PCK1, however, was

not affected [35]. The latter is in agreement with the present study

where a reduced FBP1 protein level and a trend for decreased

FBP1 mRNA level was found.

Since in mammalian models of prenatal protein undernutrition,

differences in gene expression are often found, the mRNA

expression of the differential proteins was measured to examine

if the same might be true for programming effects in the chicken.

Expression of PCK2 and HIBADH, however, was not altered

between different groups. The gene expression of FBP1 tended to

be numerically lower (15% reduction) in the liver of the albumen-

deprived chicks, compared to a 40% reduction in protein

abundance. Most likely, the different abundance in these proteins

are regulated via post-transcriptional or post-translational modi-

fications.

Finally, the lower embryonic survival of the albumen-deprived

chicks compared to both the sham and the control group is in

agreement with studies in literature after performance of similar

egg manipulations [6,36] and with our previous results [8,9]. The

reduced survival is the result of an increased early embryonic

mortality caused by the manipulation of the egg and inherent to

this animal model. Furthermore, if the embryo survived the early

stages of the embryonic development, the chance of a successful

hatch was the same in the three treatments, as no differences in

mid and late death were detected.

Conclusion

Previous results had already demonstrated the existence of both

short- and long-term effects of embryonic protein undernutrition

by albumen removal in the chicken. This study demonstrates that

these zootechnical and physiological differences are not yet present

during the perinatal period, before the conflict between the

prenatal and postnatal conditions arises. Metabolic programming

was revealed by the observed hepatic proteome changes related

with amino acid and glucose metabolism.
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