Crohn disease; ER stress; autophagy; genetic interaction; ulcerative colitis
Abstract :
[en] Genome-wide association studies have identified several genes implicated in autophagy (ATG16L1, IRGM, ULK1, LRRK2, and MTMR3), intracellular bacterial sensing (NOD2), and endoplasmic reticulum (ER) stress (XBP1 and ORMDL3) to be associated with Crohn disease (CD). We studied the known CD-associated variants in these genes in a large cohort of 3451 individuals (1744 CD patients, 793 ulcerative colitis (UC) patients and 914 healthy controls). We also investigated the functional phenotype linked to these genetic variants. Association with CD was confirmed for NOD2, ATG16L1, IRGM, MTMR3, and ORMDL3. The risk for developing CD increased with an increasing number of risk alleles for these genes (P<0.001, OR 1.26 [1.20 to 1.32]). Three times as many (34.8%) CD patients carried a risk allele in all three pathways, in contrast to 13.3% of the controls (P<0.0001, OR = 3.46 [2.77 to 4.32]). For UC, no significant association for one single nucleotide polymorphism (SNP) was found, but the risk for development of UC increased with an increasing total number of risk alleles (P = 0.001, OR = 1.10 [1.04 to 1.17]). We found a genetic interaction between reference SNP (rs)2241880 (ATG16L1) and rs10065172 (IRGM) in CD. Functional experiments hinted toward an association between an increased genetic risk and an augmented inflammatory status, highlighting the relevance of the genetic findings.
Disciplines :
Genetics & genetic processes
Author, co-author :
Hoefkens, Eveline
Nys, Kris
John, Jestinah M.
Van Steen, Kristel ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Arijs, Ingrid
Van der Goten, Jan
Van Assche, Gert
Agostinis, Patrizia
Rutgeerts, Paul
Vermeire, Severine
Cleynen, Isabelle
Language :
English
Title :
Genetic association and functional role of Crohn disease risk alleles involved in microbial sensing, autophagy, and endoplasmic reticulum (ER) stress.
Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, et al.; NIDDK IBD Genetics Consortium; Belgian-French IBD Consortium; Wellcome Trust Case Control Consortium. Genomewide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40:955-62; PMID:18587394; http://dx.doi.org/10. 1038/ng.175
Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010; 42:1118-25; PMID:21102463; http://dx.doi.org/10.1038/ng.717
Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, et al.; International IBD Genetics Consortium (IIBDGC). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012; 491:119-24; PMID:23128233; http://dx.doi.org/10.1038/nature11582
Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411:603-6; PMID:11385577; http://dx.doi.org/10.1038/35079114
Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, Cantley LC. Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. [Abstract]. Mol Cell Biol 2007; 27:6012-25; PMID:17562858; http://dx.doi.org/10.1128/MCB.00270-07
Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39:207-11; PMID:17200669; http://dx.doi.org/10.1038/ ng1954
Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, et al.; Wellcome Trust Case Control Consortium. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet 2007; 39:830-2; PMID:17554261; http://dx.doi.org/10.1038/ng2061
Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22:124-31; PMID:20034776; http://dx.doi.org/10.1016/j.ceb.2009.11.014
Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One 2008; 3:e3391; PMID:18852889; http://dx.doi.org/10.1371/ journal.pone.0003391
Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, Mari B, Barbry P, Mosnier JF, Hébuterne X, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet 2011; 43:242-5; PMID:21278745; http://dx.doi.org/10.1038/ng.762
McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody MC, Hall JL, Brant SR, Cho JH, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat Genet 2008; 40:1107-12; PMID:19165925; http://dx.doi.org/10.1038/ng.215
Gasche C, Scholmerich J, Brynskov J, D'Haens G, Hanauer SB, Irvine EJ, Jewell DP, Rachmilewitz D, Sachar DB, Sandborn WJ, et al. A simple classification of Crohn's disease: report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm Bowel Dis 2000; 6:8-15; PMID:10701144; http://dx.doi.org/10.1097/00054725-200002000-00002
Alegre-Abarrategui J, Wade-Martins R. Parkinson disease, LRRK2 and the endocyticautophagic pathway. Autophagy 2009; 5:1208-10; PMID:19770575; http://dx.doi.org/10.4161/auto.5.8.9894
Henderson P, van Limbergen JE, Wilson DC, Satsangi J, Russell RK. Genetics of childhood-onset inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:346-61; PMID:20839313; http://dx.doi.org/10.1002/ibd.21283
Henckaerts L, Cleynen I, Brinar M, John JM, Van Steen K, Rutgeerts P, Vermeire S. Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease. Inflamm Bowel Dis 2011; 17:1392-7; PMID:21560199; http://dx.doi.org/10. 1002/ibd.21486
Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008; 134:743-56; PMID:18775308; http://dx.doi.org/10.1016/j.cell. 2008.07.021
Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010; 16:90-7; PMID:19966812; http://dx.doi.org/10.1038/nm.2069
Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11:55-62; PMID:19898471; http://dx.doi.org/10.1038/ni. 1823
Fritz T, Niederreiter L, Adolph T, Blumberg RS, Kaser A. Crohn's disease: NOD2, autophagy and ER stress converge. Gut 2011; 60:1580-8; PMID:21252204; http://dx.doi.org/10.1136/gut.2009.206466
Wellcome Trust Case Control Consortium. Genomewide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661-78; PMID:17554300; http://dx.doi.org/10.1038/nature05911
Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39:596-604; PMID:17435756; http://dx.doi.org/10.1038/ng2032
Amre DK, Mack DR, Morgan K, Krupoves A, Costea I, Lambrette P, Grimard G, Dong J, Feguery H, Bucionis V, et al. Autophagy gene ATG16L1 but not IRGM is associated with Crohn's disease in Canadian children. Inflamm Bowel Dis 2009; 15:501-7; PMID:18985712; http://dx.doi.org/10.1002/ibd.20785
Frolkis A, Dieleman LA, Barkema H, Panaccione R, Ghosh S, Fedorak RN, Madsen K, Kaplan GG. Environment and the inflammatory bowel diseases. Can J Gastroenterol 2013; 27:e18-24; PMID:23516681
Wehkamp J, Schmid M, Stange EF. Defensins and other antimicrobial peptides in inflammatory bowel disease. Curr Opin Gastroenterol 2007; 23:370-8; PMID:17545771; http://dx.doi.org/10.1097/MOG.0b013e328136c580
Palomino-Morales RJ, Oliver J, Gómez-García M, López-Nevot MA, Rodrigo L, Nieto A, Alizadeh BZ, Martín J. Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach. Genes Immun 2009; 10:356-64; PMID:19491842; http://dx.doi.org/10.1038/gene.2009.25
Umeno J, Asano K, Matsushita T, Matsumoto T, Kiyohara Y, Iida M, Nakamura Y, Kamatani N, Kubo M. Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn's disease and ulcerative colitis. Inflamm Bowel Dis 2011; 17:2407-15; PMID:21351207; http://dx.doi.org/ 10.1002/ibd.21651
Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 2011; 60:631-7; PMID:21209126; http://dx.doi.org/10.1136/gut.2010.223263
Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Ballet V, et al. Predominant dysbiosis in patients with ulcerative colitis is different from Crohn's disease patients [Abstract]. ECCO 2012
Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedeker EC, Harpaz N, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:179-84; PMID:20839241; http://dx.doi.org/10.1002/ ibd.21339
Weersma RK, Stokkers PC, van Bodegraven AA, van Hogezand RA, Verspaget HW, de Jong DJ, van der Woude CJ, Oldenburg B, Linskens RK, Festen EA, et al.; Dutch Initiative on Crohn and Colitis (ICC). Molecular prediction of disease risk and severity in a large Dutch Crohn's disease cohort. Gut 2009; 58:388-95; PMID:18824555; http://dx.doi.org/10.1136/gut.2007.144865
Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 2010; 12:99-113; PMID:19747213; http://dx.doi.org/10.1111/j.1462-5822.2009.01381.x
Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347:417-29; PMID:12167685; http://dx.doi.org/10.1056/NEJMra020831
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:1215; PMID:3344216; http://dx.doi.org/10.1093/nar/16.3.1215
Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001; 69:138-47; PMID:11404819; http://dx.doi.org/10.1086/321276
Cattaert T, Calle ML, Dudek SM, Mahachie John JM, Van Lishout F, Urrea V, Ritchie MD, Van Steen K. Model-based multifactor dimensionality reduction for detecting epistasis in case-control data in the presence of noise. Ann Hum Genet 2011; 75:78-89; PMID:21158747; http://dx.doi.org/10.1111/j.1469-1809.2010. 00604.x
Mahachie John JM, Cattaert T, Lishout FV, Gusareva ES, Steen KV. Lower-order effects adjustment in quantitative traits model-based multifactor dimensionality reduction. PLoS One 2012; 7:e29594; PMID:22242176; http://dx.doi.org/10.1371/journal.pone.0029594
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5:R80; PMID:15461798; http://dx.doi.org/10.1186/gb-2004-5-10-r80
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4:249-64; PMID:12925520; http://dx.doi.org/10.1093/biostatistics/4.2.249
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3:e3; PMID:16646809; http://dx.doi.org/10.2202/1544-6115.1027
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JR Stat Soc 1995; 85:289-300