[en] The morphology of abrupt bursts of magnetic flux into superconducting films with engineered
periodic pinning centers (antidots) has been investigated. Guided flux avalanches of thermomagnetic origin develop a tree-like structure, with the main trunk perpendicular to the borders of the sample, while secondary branches follow well-defi ned directions determined by the geometrical details of the underlying periodic pinning landscape. Strikingly, we demonstrate that in a superconductor with relatively weak random pinning, the morphology of such flux avalanches can be fully controlled by proper combinations of lattice symmetry and antidot geometry. Moreover, the resulting flux patterns can be reproduced, to the fi nest details, by simulations based on a phenomenological thermomagnetic model. In turn, this model can be used to predict such complex structures and to estimate physical variables of more di fficult experimental access, such as the local values of temperature and electric fi eld.
Disciplines :
Physics
Author, co-author :
Motta, M.; Universidade de Sao Carlos, Brazil
Colauto, F.; Universidade de Sao Carlos, Brazil
Vestgarden, J.I.; University of Oslo - UiO
Fritzsche, J.; Chalmers Univerity of Technology
Timmermans, M.; Katholieke Universiteit Leuven - KUL
Cuppens, J.; Katholieke Universiteit Leuven - KUL
Attanasio, C.; CNR-SPIN Salerno
Cirillo, C.; CNR-SPIN Salerno
Moshchalkov, V.V.; Katholieke Universiteit Leuven - KUL
Van de Vondel, J.; Katholieke Universiteit Leuven - KUL
Johansen, T.H.; University of Oslo - UiO
Ortiz, W.A.; Univeridade de Sao Carlos, Brazil
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique de la matière condensée
U. Bolz, B. Biehler, D. Schmidt, B.-U. Runge, and P. Leiderer, Europhys. Lett. 64, 517 (2003). EULEEJ 0295-5075 10.1209/epl/i2003-00261-y
L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984). PRLTAO 0031-9007 10.1103/PhysRevLett.52.1033
L. Fernandez and F. Guinea, J. Phys. A 21, L301 (1988). JPHAC5 0305-4470 10.1088/0305-4470/21/5/006
V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge University Press, Cambridge, 2003).
R. G. Mints and A. L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981). RMPHAT 0034-6861 10.1103/RevModPhys.53.551
R. G. Mints and E. H. Brandt, Phys. Rev. B 54, 12421 (1996). PRBMDO 0163-1829 10.1103/PhysRevB.54.12421
I. S. Aranson, A. Gurevich, M. S. Welling, R. J. Wijngaarden, V. K. Vlasko-Vlasov, V. M. Vinokur, and U. Welp, Phys. Rev. Lett. 94, 037002 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.94.037002
D. Y. Vodolazov and F. M. Peeters, Phys. Rev. B 72, 172508 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.72.172508
J. Gutierrez, B. Raes, J. Van de Vondel, A. V. Silhanek, R. B. G. Kramer, G. W. Ataklti, and V. V. Moshchalkov, Phys. Rev. B 88, 184504 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.184504
A. Gurevich and M. Friesen, Phys. Rev. B 62, 4004 (2000). PRBMDO 0163-1829 10.1103/PhysRevB.62.4004
D. Cerbu, V. N. Gladilin, J. Cuppens, J. Fritzsche, J. Tempere, J. T. Devreese, V. V. Moshchalkov, A. V. Silhanek, and J. Van de Vondel, New J. Phys. 15, 063022 (2013). 10.1088/1367-2630/15/6/063022
J. R. Clem and K. K. Berggren, Phys. Rev. B 84, 174510 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.174510
G. Via, C. Navau, and A. Sanchez, J. Appl. Phys. 113, 093905 (2013). JAPIAU 0021-8979 10.1063/1.4794315
J. I. Vestgården and T. H. Johansen, Supercond. Sci. Technol. 25, 104001 (2012). SUSTEF 0953-2048 10.1088/0953-2048/25/10/104001
A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B 70, 224502 (2004). PRBMDO 1098-0121 10.1103/PhysRevB.70.224502
D. V. Denisov, A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B 73, 014512 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73. 014512
V. Vlasko-Vlasov, U. Welp, V. Metlushko, and G. W. Crabtree, Physica C 341-348, 1281 (2000). PHYCE6 0921-4534 10.1016/S0921-4534(00)00895-9
M. Menghini, R. J. Wijngaarden, A. V. Silhanek, S. Raedts, and V. V. Moshchalkov, Phys. Rev. B 71, 104506 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.71.104506
M. Motta, F. Colauto, R. Zadorosny, T. H. Johansen, R. B. Dinner, M. G. Blamire, G. W. Ataklti, V. V. Moshchalkov, A. V. Silhanek, and W. A. Ortiz, Phys. Rev. B 84, 214529 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.214529
I. Aranson, A. Gurevich, and V. Vinokur, Phys. Rev. Lett. 87, 067003 (2001). PRLTAO 0031-9007 10.1103/PhysRevLett.87.067003
M. S. Welling, R. J. Wijngaarden, C. M. Aegerter, R. Wördenweber, and P. Lahl, Physica C 404, 410 (2004). PHYCE6 0921-4534 10.1016/j.physc.2003. 11.026
T. Tamegai, Y. Tsuchiya, Y. Nakajima, T. Yamamoto, Y. Nakamura, J. S. Tsai, M. Hidaka, H. Terai, and Z. Wang, Physica C 470, 734 (2010). PHYCE6 0921-4534 10.1016/j.physc.2010.02.075
N. Nakai and M. Machida, Physica C 470, 1148 (2010). PHYCE6 0921-4534 10.1016/j.physc.2010.05.060
P. de Gennes, Superconductivity of Metals and Alloys (Westview, Boulder, 1999).
P. H. Kes and C. C. Tsuei, Phys. Rev. B 28, 5126 (1983). PRBMDO 0163-1829 10.1103/PhysRevB.28.5126
C. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H. Kronmüller, Rep. Prog. Phys. 65, 651 (2002). RPPHAG 0034-4885 10.1088/0034-4885/65/5/202
L. E. Helseth, R. W. Hansen, E. I. Ilyashenko, M. Baziljevich, and T. H. Johansen, Phys. Rev. B 64, 174406 (2001). PRBMDO 0163-1829 10.1103/PhysRevB.64. 174406
T. Schuster, H. Kuhn, E. H. Brandt, M. V. Indenbom, M. Klaser, G. Muller-Vogt, H.U. Habermeier, H. Kronmuller, and A. Forkl, Phys. Rev. B 52, 10375 (1995). PRBMDO 0163-1829 10.1103/PhysRevB.52.10375
M. Pannetier, R. J. Wijngaarden, I. Floan, J. Rector, B. Dam, R. Griessen, P. Lahl, and R. Wördenweber, Phys. Rev. B 67, 212501 (2003). PRBMDO 0163-1829 10.1103/PhysRevB.67.212501
A. V. Silhanek, M. V. Milosević, R. B. G. Kramer, G. R. Berdiyorov, J. Van de Vondel, R. F. Luccas, T. Puig, F. M. Peeters, and V. V. Moshchalkov, Phys. Rev. Lett. 104, 017001 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.017001
Th. Schuster, H. Kuhn, and E. H. Brandt, Phys. Rev. B 54, 3514 (1996). PRBMDO 0163-1829 10.1103/PhysRevB.54.3514
Notice that, unlike for sample Nb-I, 45(Equation presented) avalanches are clearly visible in the Nb-II sample after zero-field cooling. This is likely a consequence of a weaker disorder in sample Nb-II.
J. I. Vestgården, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Sci. Rep. 2, 886 (2012). 10.1038/srep00886
P. Mikheenko, A. J. Qviller, J. I. Vestgården, S. Chaudhuri, I. J. Maasilta, Y. M. Galperin, and T. H. Johansen, Appl. Phys. Lett. 102, 022601 (2013). APPLAB 0003-6951 10.1063/1.4775693
D. V. Denisov, A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H. Johansen, Phys. Rev. B 73, 014512 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73. 014512
J. I. Vestgården, P. Mikheenko, Y. M. Galperin, and T. H. Johansen, New J. Phys. 15, 093001 (2013). NJOPFM 1367-2630 10.1088/1367-2630/15/9/093001
For this particular simulation the parameters are (Equation presented) W/K m(Equation presented), (Equation presented) = 50 (Equation presented), (Equation presented) = 2.5 mm, (Equation presented) = 60 nm, grid size (Equation presented), AD width 0.015(Equation presented), AD center-to-center distance 0.03 (Equation presented).