[en] OBJECTIVE: To determine the phenotype of osteoblasts from the sclerotic zones of human osteoarthritic (OA) subchondral bone. METHODS: Human osteoblasts were isolated from sclerotic or nonsclerotic areas of subchondral bone and cultured for 14 days in monolayer. The expression of 14 genes was investigated by real-time reverse transcription-polymerase chain reaction. The activities of alkaline phosphatase (AP) and transglutaminases (TGases) were quantified by enzymatic assays. C-terminal type I procollagen propeptide (CPI), interleukin-1beta (IL-1beta), IL-6, IL-8, transforming growth factor beta1 (TGFbeta1), osteocalcin (OC), and osteopontin (OPN) were assayed in the culture medium by immunoassay. RESULTS: Gene expression levels of matrix metalloproteinase 13, COL1A1 and COL1A2, OPN, tissue-nonspecific AP, OC, vascular endothelial growth factor, ANKH, TGase 2, factor XIIIA, and dentin matrix protein 1 were significantly up-regulated in sclerotic osteoblasts compared with nonsclerotic osteoblasts. In contrast, parathyroid hormone receptor gene expression was depressed in sclerotic osteoblasts, but bone sialoprotein levels were unchanged. The activities of AP and TGases were increased in sclerotic osteoblasts, while matrix mineralization, revealed by alizarin red staining, was decreased. In parallel, protein synthesis of CPI, OC, OPN, IL-6, IL-8, and TGFbeta1 was significantly higher in sclerotic osteoblasts than in nonsclerotic osteoblasts, while IL-1beta production was similar in both groups. CONCLUSION: These findings contribute to a better understanding of the mechanisms involved in subchondral bone sclerosis and identify osteoblasts with an altered phenotype as a potential target for future OA therapies.
Disciplines :
Rheumatology
Author, co-author :
Sanchez, Christelle ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartillage (U.R.O.C.)
Deberg, Michelle ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartillage (U.R.O.C.)
Bellahcene, Akeila ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Labo de recherche sur les métastases
Castronovo, Vincenzo ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie générale et cellulaire
Msika, Philippe
Delcour, Jean-Pierre
Crielaard, Jean-Michel ; Université de Liège - ULiège > Département des sciences de la motricité > Evaluation et entraînement des aptitudes physiques
Henrotin, Yves ; Université de Liège - ULiège > Département des sciences de la motricité > Unité de recherche sur l'os et le cartillage (U.R.O.C.) - Didactique des sciences de la santé - Pathologie générale et physiopathologie
Language :
English
Title :
Phenotypic Characterization of Osteoblasts from the Sclerotic Zones of Osteoarthritic Subchondral Bone
Publication date :
February 2008
Journal title :
Arthritis and Rheumatism
ISSN :
0004-3591
eISSN :
1529-0131
Publisher :
John Wiley & Sons, Hoboken, United States - New York
Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP. Subchondral bone in osteoarthritis. Calcif Tissue Int 1991;49:20-6.
Carlson CS, Loeser RF, Jayo MJ, Weaver DS, Adams MR, Jerome CP. Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease. J Orthop Res 1994;12:331-9.
Carlson CS, Loeser RF, Purser CB, Gardin JF, Jerome CP. Osteoarthritis in cynomolgus macaques. III. Effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res 1996;11:1209-17.
Radin EL, Paul IL, Tolkoff MJ. Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum 1970;13:400-5.
Dedrick DK, Goldstein SA, Brandt KD, O'Connor BL, Goulet RW, Albrecht M. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum 1993;36:1460-7.
Boyd SK, Muller R, Zernicke RF. Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 2002;17:687-94.
Watson PJ, Hall LD, Malcolm A, Tyler JA. Degenerative joint disease in the guinea pig: use of magnetic resonance imaging to monitor progression of bone pathology. Arthritis Rheum 1996;39:1327-37.
Muller-Gerbl M. The subchondral bone plate. Adv Anat Embryol Cell Biol 1998;141:III-XI, 1-134.
Day JS, van der Linden JC, Bank RA, Ding M, Hvid I, Sumner DR, et al. Adaptation of subchondral bone in osteoarthritis. Biorheology 2004;41:359-68.
Westacott CI, Webb GR, Warnock MG, Sims JV, Elson CJ. Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 1997;40:1282-91.
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin Y. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes: this effect is mimicked by interleukin-6, -1β and oncostatin M pre-treated non sclerotic osteoblasts. Osteoarthritis Cartilage 2005;13:979-87.
Hilal G, Massicotte F, Martel-Pelletier J, Fernandes JC, Pelletier JP, Lajeunesse D. Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts. J Bone Miner Res 2001;16:713-21.
Hilal G, Martel-Pelletier J, Pelletier JP, Duval N, Lajeunesse D. Abnormal regulation of urokinase plasminogen activator by insulin-like growth factor 1 in human osteoarthritic subchondral osteoblasts. Arthritis Rheum 1999;42:2112-22.
Massicotte F, Fernandes JC, Martel-Pelletier J, Pelletier JP, Lajeunesse D. Modulation of insulin-like growth factor 1 levels in human osteoarthritic subchondral bone osteoblasts. Bone 2006;38:333-41.
Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 1998;41:891-9.
Mansell JP, Bailey AJ. Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 1998;101:1596-603.
Bailey AJ, Sims TJ, Knott L. Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int J Biochem Cell Biol 2002;34:176-82.
Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin Y. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 2005;13:988-97.
Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 2004;329:77-84.
Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 1980;102:344-52.
Sanchez C, Mathy-Hartert M, Deberg MA, Ficheux H, Reginster JY, Henrotin YE. Effects of rhein on human articular chondrocytes in alginate beads. Biochem Pharmacol 2003;65:377-88.
Dequeker J, Mohan S, Finkelman RD, Aerssens J, Baylink DJ. Generalized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor β in cortical bone from the iliac crest: possible mechanism of increased bone density and protection against osteoporosis. Arthritis Rheum 1993;36:1702-8.
Lisignoli G, Toneguzzi S, Grassi F, Piacentini A, Tschon M, Cristino S, et al. Different chemokines are expressed in human arthritic bone biopsies: IFN-γ and IL-6 differently modulate IL-8, MCP-1 and RANTES production by arthritic osteoblasts. Cytokine 2002;20:231-8.
Massicotte F, Lajeunesse D, Benderdour M, Pelletier JP, Hilal G, Duval N, et al. Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E2 by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage 2002;10:491-500.
Mansell JP, Tarlton JF, Bailey AJ. Biochemical evidence lor altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br J Rheumatol 1997;36:16-9.
Huang Z, Nelson ER, Smith RL, Goodman SB. The sequential expression profiles of growth factors from osteoprogenitors to osteoblasts in vitro. Tissue Eng 2007;13:2311-20.
Truong LH, Kuliwaba JS, Tsangari H, Fazzalari NL. Differential gene expression of bone anabolic factors and trabecular bone architectural changes in the proximal femoral shaft of primary hip osteoarthritis patients. Arthritis Res Ther 2006;8:R188.
Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL. Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 2004;164:1199-209.
Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 1996;317:59-64.
Johnson K, Terkeltaub R. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthritis Cartilage 2004;12:321-35.
Kaartinen MT, Murshed M, Karsenty G, McKee MD. Osteopontin upregulation and polymerization by transglutaminase 2 in calcified arteries of Matrix G1a protein-deficient mice. J Histochem Cytochem 2007;55:375-86.
Rosenthal AK, Gohr CM, Uzuki M, Masuda I. Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol 2007;26:96-105.
Dodds RA, Connor JR, James IE, Rykaczewski EL, Appelbaurn E, Dul E, et al. Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces: an in vitro and ex vivo study of remodeling bone. J Bone Miner Res 1995;10:1666-80.
Erlebacher A, Filvaroff EH, Ye JQ, Derynck R. Osteoblastic responses to TGF-β during bone remodeling. Mol Biol Cell 1998;9:1903-18.
Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC. Transforming growth factor-β1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the Smad and MAPK signaling pathways and their components, Smad2 and Runx2. J Biol Chem 2004;279:19327-34.
Ong JL, Carnes DL, Sogal A. Effect of transforming growth factor-β on osteoblast cells cultured on 3 different hydroxyapatite surfaces. Int J Oral Maxillofac Implants 1999;14:217-25.
Franchimont N, Rydziel S, Canalis E. Transforming growth factor-β increases interleukin-6 transcripts in osteoblasts. Bone 2000; 26:249-53.
Franchimont N, Gangji V, Durant D, Canalis E. Interleukin-6 with its soluble receptor enhances the expression of insulin-like growth factor-I in osteoblasts. Endocrinology 1997;138:5248-55.
Franchimont N, Rydziel S, Delany AM, Canalis E. Interleukin-6 and its soluble receptor cause a marked induction of collagenase 3 expression in rat osteoblast cultures. J Biol Chem 1997;272:12144-50.
Taguchi Y, Yamamoto M, Yamate T, Lin SC, Mocharla H, DeTogni P, et al. Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians 1998;110:559-74.
Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990;145:3297-303.
Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sei U S A 2002;99:4580-5.
Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 2003;33:28-37.
Ishida K, Yamaguchi M. Albumin regulates Runx2 and α1-(I) collagen mRNA expression in osteoblastic cells: comparison with insulin-like growth factor-I. Int J Mol Med 2005;16:689-94.
Tang CH, Yang RS, Fu WM. Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase Cα, and c-Src pathway in primary cultured rat osteoblasts. J Biol Chem 2005;280:22907-16.
Pash JM, Delany AM, Adamo ML, Roberts CT Jr, LeRoith D, Canalis E. Regulation of insulin-like growth factor I transcription by prostaglandin E2 in osteoblast cells. Endocrinology 1995;136:33-8.
Harada SI, Balena R, Rodan GA, Rodan SB. The role of prostaglandins in bone formation. Connect Tissue Res 1995;31:279-82.
Chow JW. Role of nitric oxide and prostaglandins in the bone formation response to mechanical loading. Exerc Sport Sci Rev 2000;28:185-8.
Merz D, Liu R, Johnson K, Terkeltaub R. IL-8/CXCL8 and growth-related oncogene α/CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol 2003;171:4406-15.