scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492-1505 (1958).
Mott, N. F. Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1-17 (1968).
Alexander, M. N. & Holcomb, D. F. Semiconductor-to-metal transition in n-type group IV semiconductors. Rev. Mod. Phys. 40, 815-829 (1968).
Rosenbaum, T. F., Andres, K., Thomas, G. A. & Bhatt, R. N. Sharp insulator transition in a random solid. Phys. Rev. Lett. 45, 1723-1726 (1980).
Gaymann, A., Geserich, H. P. & Löhneysen, H. V. Temperature dependence of the far-infrared reflectance spectra of Si:P near the metal-insulator transition. Phys. Rev. B 52, 16486-16493 (1995).
Kramer, B. & MacKinnon, A. Localization: Theory and experiment. Rep. Prog. Phys. 56, 1469-1564 (1993).
Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673-676 (1979).
Wegner, F. The mobility edge problem: Continuous symmetry and a conjecture. Z. Phys. B 35, 207-210 (1979).
Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors (Springer, 1984).
Efetov, K. B. Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, 1997).
Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238-257 (1963).
Georges, A. & Kotliar, G. Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479-6483 (1992).
Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865-951 (2006).
Dong, J. & Drabold, D. A. Atomistic structure of band-tail states in amorphous silicon. Phys. Rev. Lett. 80, 1928-1931 (1998). (Pubitemid 128623031)
Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nature Mater. 10, 202-208 (2011).
Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653-658 (2008).
Lencer, D. et al. A map for phase-change materials. Nature Mater. 7, 972-977 (2008).
Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, 1956).
Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122-128 (2007). (Pubitemid 46197648)
Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824-832 (2007). (Pubitemid 350050578)
Korringa, J. On the calculation of the energy of a Bloch wave in a metal. Physica 13, 392-400 (1947).
Kohn, W. & Rostoker, N. Solution of the Schrödinger equation in periodic lattices with an application to metallic Lithium. Phys. Rev. 94, 1111-1120 (1954).
Raoux, S. & Wuttig, M. (eds) Phase Change Materials: Science and Applications (Springer, 2008).
Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2CxTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020-7028 (2000).
Wenic, W. et al. Unravelling the interplay of local structure and physical properties in phase-change materials. Nature Mater. 5, 56-62 (2005).
Kooi, B. J. & De Hosson, T. M. J. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3Cx (x D 1;2;3) phase change material. J. Appl. Phys. 92, 3584-3590 (2002).
Matsunaga, T. & Yamada, N. Structural investigation of GeSb2Te4: A high-speed phase-change material. Phys. Rev. B 69, 104111 (2004).
Lee, B-S. et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005).
Thiess, A., Zeller, R., Bolten, M., Dederichs, P. H. & Blügel, S. Massively parallel density functional calculations for thousands of atoms: KKRnano. Phys. Rev. B 85, 235103 (2012).
Von Barth, U. & Hedin, L. A local exchange-correlation potential for the spin polarized case: I. J. Phys. C 5, 1629-1642 (1972).
VandeVondele, J. et al. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103-128 (2005). (Pubitemid 40391124)
Krack, M. & Parrinello, M. in High Performance Computing in Chemistry Vol. 25 (ed. Grotendorst, J. ) 29-51 (NIC, http://cp2k.berlios.de2004).
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703-1710 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). (Pubitemid 126631804)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.