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1 Institut für Theoretische Festkörperphysik, RWTH Aachen University, D-52056 Aachen, Germany

2 Peter Grünberg Institut and Institute for Advanced Simulations,
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The study of metal-insulator transitions in crystalline solids is a subject of paramount importance,
both from the fundamental point of view and for its relevance to the transport properties of materials.
Recently, a metal-insulator transition governed by disorder was observed in crystalline phase-change
materials. Here we report on calculations employing Density Functional Theory, which identify the
microscopic mechanism that localizes the wave functions and is driving this transition. We show
that, in the insulating phase, the electronic states responsible for charge transport are localized
inside regions having large vacancy concentrations. The transition to the metallic state is driven
by the dissolution of these vacancy clusters and the formation of ordered vacancy layers. These
results provide important insights on controlling the wave function localization, which should help
to develop conceptually new devices based on multiple resistance states.

Understanding and tailoring charge transport in crys-
talline solids is a very important aspect of solid state
physics, also in view of its relevance to a vast number
of applications. Based upon the value of the resistivity
in the limit of zero temperature, two different classes of
solids can be distinguished: while metals have a finite
resistivity, the resistivity of insulators diverges. It is par-
ticularly interesting to study compounds which undergo
a metal insulator transition (MIT) due to charge carrier
localization. Two different mechanisms have been sug-
gested to explain such electronically driven MITs. An-
derson [1] showed that strong disorder can localize elec-
tronic states at the Fermi energy, leading to insulating
behaviour. Mott [2], on the contrary, emphasized the
role of correlations for charge carrier localization.

Conceptually these two transitions are very different;
experimentally, however, they are quite difficult to sep-
arate. This can be seen for crystalline semiconductors,
in particular doped silicon [3–5], the best studied case
of a system exhibiting an electronically driven MIT. It
is now well established that both disorder and correla-
tions play an important role in these systems. In fact,
until very recently, there was to our knowledge no single
class of crystalline solids where the MIT was exclusively
governed by disorder. Hence, one can wonder if theoret-
ical studies would be able to elucidate the origin of an
MIT in a real solid. Indeed, a large number of model sys-
tems have been developed and investigated, with the aim
of describing the essential physics of Anderson [6–10] and
Mott [11–13] type MITs. To study real solids, however, it
is mandatory to accurately describe the structural prop-
erties and the electronic wavefunctions. Employing den-
sity functional theory (DFT) calculations hence could be
very rewarding. However, in general, modeling disorder

to describe the MIT requires large system sizes, which are
still difficult to handle with DFT codes. For phosphorous
doped silicon (Si:P), for example, the critical carrier con-
centration nc at the MIT is 3.8·1018 cm3 [4]. If each donor
atom would be ionized, 1 in every 12.500 Si atoms would
have to be replaced by a phosphorous donor. One would
presumably need at least 10 dopant atoms and hence a
system size of 125.000 atoms to catch a glimpse of the
driving force for the MIT in Si:P. Clearly, such a system
size is beyond the range of present DFT codes. For some
systems, such as amorphous silicon, tight-binding Hamil-
tonians were used to investigate Anderson localization in
large models containing several thousands of atoms [14].

Recently, compelling evidence for disorder induced lo-
calization has been observed in the crystalline phase-
change material (PCM) GeSb2Te4 (GST) [15], where the
measured carrier concentration was 2 · 1020 cm3, corre-
sponding to one charge carrier per 150 atoms. Therefore,
we can expect to obtain important insights on the origin
of this MIT by considering computationally feasible sys-
tem sizes of one to several thousand atoms. Furthermore,
while in experimental studies of semiconductors the MIT
is usually induced by doping, which affects both the elec-
tron correlation as well as the disorder, in GST the MIT
occurs at fixed stoichiometry. DFT now offers the unique
opportunity to study a material with the same stoichiom-
etry but different degrees of order. This opens up the pos-
sibility to identify the microscopic origin of localization
in crystalline PCMs within a fully ab initio approach.

Experimentally, it has been observed that in crystalline
GST the resistivity at 4 K changed by more than 6 or-
ders of magnitude upon increasing annealing tempera-
ture [15]. While the GST films heated to temperatures
below 250 ◦C showed a negative change of resistance with
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temperature (TCR) and a diverging resistivity in the zero
temperature limit, samples annealed above 250 ◦C led to
films with a much lower (finite) resistance and a posi-
tive TCR, i.e. metallic behaviour. This transition from
an insulating to a metallic state has been attributed to
an increasing order in the crystalline phase. Correlation
effects could be shown to be insignificant to explain this
MIT [15]. This property was related to the unique bond-
ing of the p electrons in crystalline PCMs (“resonance
bonding”), which leads to a high static dielectric constant
and thus very weak effective electron interactions [16, 17].
On the other hand, PCMs such as GST are characterized
by a high concentration of randomly arranged vacancies
on the Ge/Sb sublattice (25% in GST), as well as a statis-
tical distribution of Ge and Sb atoms on this sublattice.
Furthermore, there are significant atomic displacements
away from the sites of a perfect lattice (Peierls distor-
tions [18, 19]). This affects the overlap between adjacent
p orbitals, which impacts the electronic properties.

All of these different effects contribute to the pro-
nounced disorder and make it plausible that charge carri-
ers can indeed be localized. However, the dominant effect
responsible for Anderson localization has not yet been
identified. This issue is important not only from a funda-
mental point of view, but also in the fascinating perspec-
tive of building multiple-resistance devices by changing
the amount of disorder in GST in a controlled manner.
This technology would offer a dramatic increase in data
density with respect to current non-volatile phase-change
memories based on PCMs [20], which exploit the strong
resistivity contrast between their cubic and amorphous
phase. With these goals in mind, we have performed
DFT computations which pinpoint the microscopic mech-
anism responsible for charge carrier localization in crys-
talline PCMs. To our knowledge, this is the first time
that DFT has been successfully employed to identify the
microscopic origin of an MIT in a disordered solid.

As-deposited amorphous GST crystallizes into a cu-
bic phase (c-GST) or a hexagonal phase (h-GST) at
low and high annealing temperatures respectively [15].
To shed light on the electronic properties of the two
phases, a number of large supercells (containing up to
3584 atoms) of c-GST and h-GST with different degrees
of disorder were generated and investigated by DFT. Dis-
order was varied by progressively reducing the random-
ness in the distribution of vacancies, Ge and Sb atoms.
Two complementary electronic-structure methods were
used: the Korringa-Kohn-Rostoker (KKR) Green func-
tion method [21, 22] and a wavefunction approach (see
Methods).

Experimentally, the MIT was shown to occur in the
hexagonal phase [15]. Nevertheless, we start our anal-
ysis discussing first the fully disordered cubic rock-salt
phase, in that the study of this phase enables one to eas-
ily identify the structural configurations responsible for
the localization of electrons in both phases. At anneal-

ing temperatures between 150 and 200 ◦C, amorphous
GST crystallizes into this metastable structure [15]. This
phase is also obtained in phase-change devices [23] upon
fast recrystallization of the amorphous bits induced by
heating. There is experimental evidence [24] that one
sublattice is occupied by Te atoms only, whereas in the
second one 25 % Ge, 50 % Sb and 25 % vacancies are ar-
ranged in a random fashion. To describe this phase, we
considered two supercells composed of Ge125Sb250Te500
and Ge512Sb1024Te2048, in which vacancies, Ge and Sb
were placed on the second sublattice employing a ran-
dom number generator. Hence, the obtained distribution
of vacancies, Ge and Sb was completely uncorrelated. In
the first step, relaxations from the ideal lattice positions
were not included. p orbitals govern the electronic struc-
ture of PCMs at EF [25]. Therefore, to reveal the influ-
ence of chemical disorder on the electronic properties of
GST, we have analyzed the local density of these p states
(LDOS) on each atomic site. This quantity turns out to
be mostly affected by the distribution of vacancies in the
neighbouring shells. Since, for Te atoms, disorder occurs
on the nearest-neighbour sites, whereas, for Ge and Sb
atoms, it occurs on the next-nearest and third-nearest
neighbour sites, the LDOS of Te atoms is much more
sensitive to randomness. Therefore, in the following we
focus on the Te states (for a discussion of the LDOS of
Ge and Sb, see Supplementary Information).

Fig. 1 shows the LDOS averaged over all Te atoms
having the same number of nearest-neighbour vacancies,
nVac: the LDOS in the vicinity of EF increases drasti-
cally with nVac. For nVac = 0, a minimum of the LDOS
around EF is observed. If, however, a vacancy is lo-
cated near a Te atom, the corresponding Te p orbital is
shifted to higher energies, due to the reduced hybridiza-
tion with neighbouring atoms. This shift is the larger,
the more nearest neighbour vacancies are present around
a Te atom. In particular for the configurations nVac = 3
and 4 pronounced peaks appear slightly below or at EF.
Therefore, the presence of neighbouring vacancies is shift-
ing the Te states to higher energies near EF. To quantify
this effect, in the inset of Fig. 1, the average LDOS at EF

is shown as a function of nVac, which clearly reveals the
steep increase of the LDOS. Since the shift of the LDOS
of a Te site depends almost exclusively on the number of
vacancies in the nearest-neighbour shell, in a real space
picture the LDOS can change drastically from one Te
atom to the next. As a result, given a configuration
nVac = 3 or 4, the hybridization of the Te p states with
states of neighbouring Te atoms is hindered. Hence, the
p states of the Te atoms located in regions having a high
vacancy concentration (which we shall call vacancy clus-
ters in the following) are expected to give rise to spatially
localized electronic states near EF. The LDOS of the re-
laxed models shows similar trends (see Supplementary In-
formation). The only significant effect of relaxation is to
open a pseudo gap in the LDOS just above the Fermi en-
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FIG. 1. Local density of states (LDOS) on the 500 Te sites
in a Ge125Sb250Te500 supercell. Colour coding is used to dif-
ferentiate between Te atoms with different number of nearest
neighbour vacancies, nVac. For each of these groups the av-
erage LDOS is shown as a thick line in the corresponding
colour. An increasing number of nearest-neighbour vacancies
leads to a pronounced increase in the density of Te states near
EF. This is further corroborated in the inset, which shows the
average LDOS at EF on Te atoms as a function of nVac, cal-
culated from the bigger Ge512Sb1024Te2048 supercell.

ergy. The preceding paragraphs have provided convinc-
ing evidence that in the cubic phase a high density of Te p
states is created at EF due to vacancies. These states are
candidates for Anderson localization. Two crucial tasks
still have to be tackled: (i) We need to show that elec-
tronic states are indeed localized at EF in c-GST. (ii)
Furthermore, the structural rearrangement needs to be
identified, which is responsible for the transition to the
metallic state. We will address the latter question first.
For this purpose, we have employed the wave function ap-
proach and considered a sequence of large models of GST
containing 1008 atoms, starting from a Poisson distribu-
tion of Ge, Sb and vacancies in c-GST. Subsequently,
the amount of disorder in the system was reduced, un-
til a perfectly ordered hexagonal phase was obtained, in
the stacking sequence proposed in Ref. 26 (see Fig. 2 and
the Supplementary Information). The latter phase is ex-
pected to form at very high annealing temperatures. All
models considered were fully relaxed. Three important
ingredients play a role in this sequence: the distribution

of vacancies, the substitutional Ge/Sb disorder and the
arrangement of the crystalline planes (cubic or hexago-
nal). The sequence can be divided into two sets: in the
first set, the distribution of vacancies becomes gradually
more ordered, simulating the formation of vacancy lay-
ers in the system. This was accomplished by moving Ge
and Sb atoms from every fourth layer to vacant sites in
the other layers. This depletes the number of atoms in
each fourth layer, until planes of vacancies are formed.
After structural optimization, the distance between the
Te layers at the two sides of a vacancy plane decreases
significantly. Nevertheless, we continue referring to them
as vacancy layers. For a fixed concentration of vacancies
in the depleted layers, lVac, several configurations of va-
cancies, Ge and Sb atoms were considered, in both cubic
and hexagonal arrangement. The black points in the plot
of Fig. 2 indicate the energy per atom of the most stable
structure for each lVac.

The rearrangement of vacancies affects the degree of
compositional Ge/Sb disorder as well, which is present in
the structures of this set. In the final hexagonal model
containing vacancy planes (denoted as 100% a in Fig. 2),
two Ge/Sb layers out of three contain 75% Sb and 25%
Ge, whereas the third layer contains 50% Sb and 50%
Ge. This arrangement corresponds to the model of h-
GST proposed in Ref. 27. Our results indicate that the
hexagonal phase becomes lower in energy than the cubic
phase for sufficiently large lVac (above approximately 75
%). For these lVac, the energies of the most stable cubic
models are also shown as red points in Fig. 2. Energy
differences between cubic and hexagonal arrangements
are relatively small, of the order of 5-7 meV per atom.
By far, the formation of the vacancy layers yields the
most significant reduction in energy (of the order of 50
meV per atom). These findings suggest that the struc-
tural transition to the hexagonal phase is driven by the
ordering of vacancies and takes place before the vacancy
planes have completely formed.

In the second set (denoted as 100% a-d in Fig. 2), all
the models are hexagonal and contain vacancy planes.
Substitutional disorder is reduced by swapping Ge and
Sb atoms, until perfect Ge and Sb layers are formed, in
the stacking sequence shown in the inset of Fig. 2 (100%
d). The latter phase is the lowest energy structure. How-
ever, energy differences between the models of this set are
quite small, less than 5 meV per atom, and are compa-
rable to the configurational entropy contribution of the
disordered phases. In summary, the atomic rearrange-
ment which occurs upon annealing is characterized by
the formation of vacancy layers, the decrease in compo-
sitional Ge/Sb disorder and the change from cubic to
hexagonal stacking. The ordering of vacancies leads to a
large reduction in energy and also drives the change in
stacking order.

Subsequently, we have investigated the electronic
structure of these models in terms of the inverse par-



4

FIG. 2. a) Total energy per atom, Ediff , of the models of cubic GST, hexagonal GST and intermediate structures studied. In
the plot the zero of the energy coincides with the energy of the most favourable structure, hexagonal 100 % d. Insets show
the starting random cubic phase, the final “perfect” hexagonal phase and two intermediate phases. The random cubic phase
contains 24 layers. In the structures where vacancy layers have fully formed, the number of atomic layers is 21. The last
four points (100 % a-d) correspond to hexagonal structures containing completely formed vacancy layers, which differ in the
distribution of Ge and Sb atoms in the Ge/Sb layers. In particular, in models 100 % a-c compositional Ge/Sb disorder is
present on these layers. Model 100 % a corresponds to the structure proposed in Ref. 27, which contains 75% Sb on the two
outer Ge/Sb layers and 50% Sb on the central one (see Supplementary Information). The next two structures, b and c, are
obtained by increasing the concentration of Sb on the outer Ge/Sb layers, and decreasing it on the central layer (83%, 33%
and 92%, 17% respectively). Finally, point d corresponds to the perfect hexagonal phase with two pure Sb layers and one pure
Ge layer, as shown in the last inset. The plot clearly shows that the formation of the vacancy layers yields the most significant
reduction in energy. It also suggests that the structural transition to the hexagonal phase occurs before the vacancy planes
have completely formed.

ticipation ratios (IPRs) of the electronic states near EF

as shown in Fig. 3b. With the definition of the IPR,
IPR ≡

∑
i
|Ψα,i|

4/
∑

i
(|Ψα,i|

2)2, it is well suited to char-
acterize the degree of localization of a Kohn-Sham eigen-
state α, where Ψα,i are the expansion coefficients of
α with respect to the localized Gaussian-type orbitals
(GTOs) forming the basis set (see Methods) and i runs
over all the GTOs. For an extended state, the IPR is
equal to zero in infinitely large systems. On the con-
trary, for localized states, it remains finite and provides
an estimate for the inverse of the number of atoms on
which the state is localized. In the most disordered cubic
phases, the IPR values of the states around EF are of the
order of 2-5 · 10−2. These values are at least an order
of magnitude larger than those of the extended states
deep in the valence band. The latter values are below
2 ·10−3, which reflects the fact that the number of atoms
on which these extended states spread is of the same or-
der of magnitude as the total number of atoms in the unit
cell. These numbers explain why very large models are

needed to unambiguously distinguish between localized
and extended states. The calculated IPRs of 2− 5 · 10−2

show that, in disordered c-GST, states around EF are lo-
calized in small regions of the crystals containing about
20-50 atoms. An example of such states is plotted in
Fig. 3a. Inspection of the regions where these states are
localized shows that they contain vacancy clusters, in
agreement with our previous analysis. As an example,
the vacancy concentration in the region within the lo-
calization radius of the state in Fig. 3a is about 200%
larger than the average value (see Supplementary Mate-
rial). This property holds both for the initial rocksalt
structure and the intermediate phases. Assuming that
the distribution of vacancies is Poissonian, vacancy clus-
ters correspond to low-probability, local fluctuations of
their concentration, in which the concentration exceeds
its average value. These metastable configurations, al-
though energetically unfavourable, are expected to occur
at low annealing temperatures. At higher temperatures,
these clusters disappear and vacancies form ordered two-
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FIG. 3. a) Snapshot of the Highest Occupied Molecular Orbital (HOMO) of the completely random cubic model (Cub - 25 %)
of GST. This state corresponds to the largest Inverse Participation Ratio (IPR) value (4.4 · 10−2) shown in Fig. b. Isosurfaces
render a value of 0.012 a.u: this value corresponds to the boundary region where the exponential decay of the state occurs
(see Supplementary Information). b) IPR of the different models of cubic and hexagonal GST described in the text. Notations
are the same as in Fig. 2. The dramatic decrease of the IPRs of states at EF upon vacancy ordering provides clear evidence
of a MIT driven by disorder. c) Snapshot of the HOMO state of the perfect hexagonal phase (Hex - 100 % d) of GST. The
corresponding IPR value is 1.4 · 10−3.

dimensional layers. This ordering brings about two ef-
fects. A gap of about 0.3-0.5 eV opens up at EF and
the IPRs of the states near EF decrease dramatically to
values which are characteristic for delocalized wave func-
tions (see Fig. 3). This second effect gives clear evidence
of an MIT occurring in this system upon vacancy order-
ing. Compositional Ge/Sb disorder, on the contrary, is
insufficient to localize charge carriers near EF, as evi-
denced by the small values of the corresponding IPRs.

Transport measurements indicate that both phases
have typically a relatively large density of carriers (in
the range of 1− 2 · 1020 cm−3 [15]). It is widely believed
that these carriers are due to non-stoichiometric Ge/Sb
vacancies, which turn crystalline GST into a p-type de-
generate semiconductor [28]. So far, such defects were
not considered in our models. Since the concentrations
of excess vacancies compatible with the experimental car-
rier densities are very small, inclusion of these defects in
the disordered models does not shift the Fermi energy
away from the region of localized states, as discussed in
the Supplementary Information.

To summarize, the analysis of this set of models pro-
vides clear evidence for the occurrence of a structural
transition and an Anderson MIT, both of them driven
by vacancy ordering. It also indicates that the struc-
tural transition takes place well before the vacancy lay-
ers are completely formed. This shows that there is a
significant amount of randomly distributed vacancies in
h-GST close to this transition, which should yield local-
ization of states at EF. These findings are compatible
with experiments, which show that the MIT occurs in

the hexagonal phase [15]. Nevertheless, although the two
transitions have been shown to occur almost simultane-
ously in our models, the phenomena are, in principle,
independent. Thus it would be interesting to “disentan-
gle” the effects of the two transitions. For this purpose,
it is useful to further analyze the complete sequence of
cubic models of GST shown in Fig. 2, in which Ge and
Sb atoms are moved until vacancy layers are formed but
no rearrangement of the planes from cubic to hexago-
nal stacking occurs. Fig. 3b shows that the IPRs near
EF decrease dramatically upon vacancy ordering in this
set as well, thus demonstrating that the cubic-hexagonal
transition is not relevant for the occurrence of the MIT.

In conclusion, we have shown that the MIT recently
observed in crystalline GST is due to the decrease of ran-
domness brought about by the ordering of vacancies. We
have identified the localization of the spatially directed
Te p electrons by relatively small clusters of randomly dis-
tributed vacancies on the Ge/Sb sublattice as the origin
of the high resistance. Substitutional disorder and struc-
tural distortions do not play a crucial role in this MIT.
Similar properties are expected to hold for other PCMs
along the GeTe-Sb2Te3 line containing a large number of
intrinsic vacancies, such as the technologically important
Ge2Sb2Te5 alloy. These properties make these systems
unique: in doped semiconductors, a MIT is induced by
increasing the concentration of extrinsic defects; on the
contrary, in PCMs a large number of intrinsic defects is
present and the MIT is solely induced by their rearrange-
ment. These findings, together with the fact that va-
cancy ordering is easier to induce and control than com-
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positional Ge/Sb disorder, due to the large reduction of
energy involved in the former process, open up the pos-
sibility of tuning the resistance of phase-change devices
in a controlled and reproducible fashion. We conjecture
that in materials with p electrons at the Fermi energy a
localization of their wavefunctions by small vacancy clus-
ters should be a general mechanism. Considering that in
compounds with vacancy layers, such as the transition-
metal dichalcogenides, the vacancy distribution may be
controlled similar to GST, we expect a large class of ma-
terials exhibiting an MIT due to vacancy ordering.

METHODS

Density Functional Theory calculations: the cal-
culations of the two models of rocksalt GST con-
taining 900 atoms and 3584 atoms, Ge125Sb250Te500
and Ge512Sb1024Te2048, were done using KKRNano, a
massively parallelized code based on an all-electron,
full-potential Korringa-Kohn-Rostoker Green function
method [29]. A cubic supercell and the experimental
lattice constant of 6.04 Å were used. In these calcula-
tions empty cells were included on vacancy sites to de-
scribe the lattice accurately. We used an angular mo-
mentum cut-off of lmax = 3 and the Γ-point to sam-
ple the Brillouin zone. The calculations were performed
in the (scalar-relativistic) local spin density approxima-
tion (LSDA) [30]. Relaxation of the big models de-
scribed in the second part of the paper was done using
QUICKSTEP [31], a code based on a mixed Gaussian
and plane-wave approach, included in the CP2K suite of
programs [32]. The Kohn-Sham orbitals were expanded
in a Gaussian-type basis set of triple-zeta plus polariza-
tion quality, whereas the charge density was expanded
in plane waves, with a cutoff of 300 Ry. Goedecker [33]
pseudopotentials and gradient-corrected functionals [34]
were used in these simulations. Elongated supercells con-
taining 24 atomic layers along the z direction (21 layers
for the models containing fully formed vacancy planes)
were used: this large number of layers is needed to cor-
rectly describe the hexagonal phase. The energies plotted
in Fig. 2 correspond to the models with experimental lat-
tice constants: relaxation of the cells was shown not to
change the relative energetics of the cubic and hexagonal
models.
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