[en] Earthworm populations are important decomposers contributing to aggregate formation and nutrient cycling processes involving nitrogen cycles, phosphorus and carbon. They are known to influence soil fertility by participating to important processes in soil such as soil structure regulation and organic matter dynamics. Earthworms also modify the microbial communities through digestion, stimulation and dispersion in casts. Consequently, changes in the activities of earthworm communities, as a result of soil management practices, can also be used as indicators of soil fertility and quality. It is therefore important to understand how earthworm communities affect soil dynamics. This review adresses the current state of knowledge on earthworm’s impacts
on soil structure and soil organic matter (carbon, nitrogen, and phosphorus) dynamics, with special emphasis on the effects of land management practices on earthworm communities.
Disciplines :
Agriculture & agronomy
Author, co-author :
Lemtiri, Aboulkacem ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
Colinet, Gilles ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
Alabi, Taofic ; Université de Liège - ULiège > Sciences agronomiques > Entomologie fonctionnelle et évolutive
Cluzeau, Daniel; Université Européenne de Bretagne > UMR CNRS/URennes1 EcoBio. Station Biologique
Zirbes, Lara ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires > Epidémiologie et analyse des risques appl. aux sc. vétér.
Haubruge, Eric ; Université de Liège - ULiège > Vice-Recteur de Gembloux Agro Bio Tech
Francis, Frédéric ; Université de Liège - ULiège > Sciences agronomiques > Entomologie fonctionnelle et évolutive
Language :
English
Title :
Impacts of earthworms on soil components and dynamics. A review
Alternative titles :
[en] Impacts des vers de terre sur les composants et la dynamique du sol
Publication date :
01 March 2014
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Abiven S., Menasseri S. & Chenu C., 2009. The effects of organic inputs over time on soil aggregate stability - A literature analysis. Soil Biol. Biochem., 41(1), 1-12.
Aira M., Monroy F. & Dominguez J., 2006. Changes in microbial biomass and microbial activity of pig slurry after the transit through the gut of the earthworm Eudrilus eugeniae (Kinberg, 1897). Biol. Fertil. Soils, 42(4), 371-376.
Aira M., Monroy F. & Dominguez J., 2007a. Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci. Total Environ., 385(1-3), 252-261.
Aira M., Monroy F. & Dominguez J., 2007b. Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb. Ecol., 54(4), 662-671.
Aira M., Sampedro L., Monroy F. & Dominguez J., 2008. Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biol. Biochem., 40(10), 2511-2516.
Aira M., Monroy F. & Dominguez J., 2009. Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms. J. Hazard. Mater., 162(2-3), 1404-1407.
Amtmann A. & Armengaud P., 2007. The role of calcium sensor-interacting protein kinases in plant adaptation to potassium-deficiency: new answers to old questions. Cell Res., 17, 483-485.
Anderson J., 1995. Soil organisms as engineers: microsite modulation of macroscale processes. In: Jones C. & Lawton J., eds. Linking species and ecosystems. London: Chapman & Hall, 94-106.
Barois I. & Lavelle P., 1986. Changes in respiration rate and some physico-chemical properties of soil during transit through Pontoscolex corethurus (Glossoscolecidae Oligochaete). Soil Biol. Biochem., 18(5), 539-541.
Barré P., McKenzie B.M. & Hallet P.D., 2009. Earthworms bring compacted and loose soil to a similar mechanical state. Soil Biol. Biochem., 41(3), 656-658.
Basker A., Macgregor A.N. & Kirkman J.H., 1992. Influence of soil ingestion by earthworms on the availability of potassium in soil: an incubation experiment. Biol. Fertil. Soils, 14(4), 300-303.
Basker A., Kirkman J.H. & Macgregor A.N., 1994. Changes in potassium availability and other soil properties due to soil ingestion by earthworms. Biol. Fertil. Soils, 17(2), 154-158.
Blanchart E. et al., 1999. Effects of earthworms on soil structure and physical properties. In: Lavelle et al., eds. Earthworm management in tropical agroecosystems. Wallingford, Oxon, UK; New York, NY, USA: CABI Publisher, 149-172.
Bohlen P.J., Parmelee R.W., McCartney D.A. & Edwards C.A., 1997. Earthworms effects on carbon and nitrogen dynamics of surface litter in corn agroecosystems. Ecol. Appl., 7(4), 1341-1349.
Bohlen P.J., Parmelee R.W. & Blair J.M., 2004a. Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales. In: Edwards C.A., ed. Earthworm ecology. 2nd ed. Boca Raton, FL, USA: CRC Press, 183-200.
Bohlen P.J. et al., 2004b. Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems, 7(1), 13-27.
Bonkowski M., Griffiths B.S. & Ritz K., 2000. Food preferences of earthworms for soil fungi. Pedobiologia, 44, 666-676.
Bossuyt H., Six J. & Hendrix P.F., 2006. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma, 130(1-2), 14-25.
Bouché M.B., 1972. Lombriciens de France. Écologie et systématique. Paris: INRA.
Brown B.A. & Mitchell M.J., 1981. Role of the earthworm, Eisenia foetida, in affecting survival of Salmonella enteriditis ser. typhimurium. Pedobiologia, 21(6), 434-438.
Brown G.G., 1995. How do earthworms affect microfloral and faunal community diversity? Plant Soil, 170(1), 209-231.
Brown G.G. & Doube B., 2004. Functional interactions between earthworms, microorganisms, organic matter and plants. Earthworm ecology. 2nd ed. London; Boca Raton, FL, USA: CRC Press, 213-240.
Butenschoen O., Marhan S., Langel R. & Scheu S., 2009. Carbon and nitrogen mobilisation by earthworms of different functional groups as affected by soil sand content. Pedobiologia, 52(4), 263-272.
Byzov B.A., Khomyakov N.V., Kharin S.A. & Kurakov A.V., 2007. Fate of soil bacteria and fungi in the gut of earthworms. Eur. J. Soil Biol., 43(1), 149-156.
Carpenter D., Hodson M.E., Eggleton P. & Kirk C., 2007. Earthworm induced mineral weathering: preliminary results. Eur. J. Soil Biol., 43(1), 176-183.
Chan K.Y., 2001. An overview of some tillage impacts on earthworm population abundance and diversity -implications for functioning in soils. Soil Till. Res., 57(4), 179-191.
Chapuis-Lardy L., Brossard M., Lavelle P. & Schouller E., 1998. Phosphorus transformations in a ferralsol through ingestion by Pontoscolex corethrurus, a geophagous earthworm. Eur. J. Soil Biol., 34(2), 61-67.
Chen S., Lian B. & Liu C.Q., 2008. The role of a strain of Bacillus mucilaginosus on weathering of phosphorite rock under experimental conditions. Acta Mineralogica Sinica, 28(1), 77-83.
Coq S. et al., 2007. Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues - an experimental study (Madagascar). Soil Biol. Biochem., 39(8), 2119-2128.
Cortez J., Billes G. & Bouché M.B., 2000. Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biol. Fertil. Soils, 30(4), 318-327.
Curry J.P. & Schmidt O., 2007. The feeding ecology of earthworms - a review. Pedobiologia, 50(4), 463-477.
Darwin C., 1881. The formation of vegetable mould through the actions of worms with observations on their habits. London: Murray.
Dash M.C. & Patra U.C., 1977. Density, biomass and energy budget of a tropical earthworm population from a grassland site in Orissa, India. Rev. Ecol. Biol. Sol, 14(3), 461-471.
Dash M.C. & Patra U.C., 1979. Wormcast production and nitrogen contribution to soil by a tropical earthworm population from a grassland site in Orissa, India. Rev. Ecol. Biol. Sol, 16(1), 79-83.
Desjardins T. et al., 2003. Effects of earthworm inoculation on soil organic matter dynamics of a cultivated ultisol. Pedobiologia, 47(5-6), 835-841.
Devliegher W. & Verstraete W., 1995. Lumbricus terrestris in a soil core experiment: nutrient-enrichment processes (NEP) and gut-associated processes (GAP) and their effect on microbial biomass and microbial activity. Soil Biol. Biochem., 27(12), 1573-1580.
Devliegher W. & Verstraete W., 1997. Microorganisms and soil physico-chemical conditions in the drilosphere of Lumbricus terrestris. Soil Biol. Biochem., 29(11-12), 1721-1729.
Doube B.M. & Brown G.G., 1998. Life in a complex community: functional interactions between earthworms, organic matter, microorganisms, and plant growth. In: Edwards C.A., ed. Earthworm ecology. Boca Raton, FL, USA: CRC Press, 179-211.
Drake H.L. & Horn M.A., 2007. As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu. Rev. Microbiol., 61, 169-189.
Edwards C.A., 1984. Changes in agricultural practice and their impact upon soil organisms. In: Jenkins D., ed. Proceedings of ITE symposium no. 13, The impact of agriculture on wildlife, agriculture and the environment, 28-29 February and 1 March 1984, Monks Wood Experimental Station, Sawtry, Cambridgeshire, UK, 56-65.
Eriksen-Hamel N.S. et al., 2009. Earthworm populations and growth rates related to long-term crop residue and tillage management. Soil Tillage Res., 104(2), 311-316.
Ernst G. & Emmerling C., 2009. Impact of five different tillage systems on soil organic carbon content and the density, biomass and community composition of earthworms after a ten year period. Eur. J. Soil Biol., 45(3), 247-251.
Felske A., Akkermans A.D.L. & De Vos W.M., 1998. In situ detection of an uncultured predominant Bacillus in Dutch grassland soils. Appl. Environ. Microbiol., 64(11), 4588-4590.
Flegel M. & Schrader S., 2000. Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol. Biochem., 32(8-9), 1191-1196.
Freitag A., Rudert M. & Bock E., 1987. Growth of Nitrobacter by dissimilatoric nitrate reduction. FEMS Microbiol. Lett., 48(1-2), 105-109.
Frelich L.E. et al., 2006. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions, 8(6), 1235-1245.
Garcia C. et al., 1992. Changes in ATP content, enzyme activity and inorganic nitrogen species during composting of organic wastes. Can. J. Soil Sci., 72(3), 243-253.
Gilot C., 1997. Effects of a tropical geophageous earthworm, Millsonia anomala (Megascolecidae), on soil characteristics and production of a yam crop in Ivory Coast. Soil Biol. Biochem., 29(3-4), 353-359.
Gómez-Brandón M., Aira M., Lores M. & Domínguez J., 2011. Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes. Plos One, 6, e24786.
Hale C.M., Frelich L.E. & Reich P.B., 2005. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota. Ecosystems, 8(8), 911-927.
Hopkins D.W. & Gregorich E.G., 2005. Carbon as a substrate for soil organisms. In: Bardgett R.D., Usher M.B. & Hopkins D.W., eds. Biodiversity and function in soils. British Ecological Society Ecological Reviews. Cambridge, UK: Cambridge University Press, 57-79.
Horn M.A., Schramm A. & Drake H.L., 2003. The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl. Environ. Microbiol., 69(3), 1662-1669.
Ihssen J. et al., 2003. N2O-producing microorganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Appl. Environ. Microbiol., 69(3), 1655-1661.
Johnsen A.R., Wick L.Y. & Harms H., 2005. Principles of microbial PAH-degradation in soil. Environ. Pollut., 133, 71-84.
Johnson-Maynard J.L., Umiker K.J. & Guy S.O., 2007. Earthworm dynamics and soil physical properties in the first three years of no-till management. Soil Till. Res., 94(2), 338-345.
Kay B.D., 1998. Soil structure and organic carbon: a review. In: Lal R. et al., eds. Soil processes and the carbon cycle. Boca Raton, FL, USA: CRC Press, 169-197.
Ketterings Q.M., Blair J.M. & Marinissen J.C.Y., 1997. Effects of earthworms on soil aggregate stability and carbon and nitrogen storage in a legume cover crop agroecosystem. Soil Biol. Biochem., 29(3-4), 401-408.
Kiikkilä O., Kitunen V. & Smolander A., 2006. Dissolved soil organic matter from surface horizons under birch and conifers: degradation in relation to chemical characteristics. Soil Biol. Biochem., 38(4), 737-746.
Kirchner M.J., Wollum II A.F. & King L.D., 1993. Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Sci. Soc. Am. J., 57(5), 1289-1295.
Lachnicht S.L., Parmelee R.W., McCartney D. & Allen M., 1997. Characteristics of macroporosity in a reduced tillage agroecosystem with manipulated earthworm populations: implications for infiltration and nutrient transport. Soil Biol. Biochem., 29(3-4), 493-498.
Lattaud C. et al., 1998. The diversity of the digestive systems in tropical geophagous earthworms. Appl. Soil Ecol., 9(1-3), 189-195.
Lavelle P., 1988. Earthworm activities and the soil system. Biol. Fertil. Soils, 6(3), 237-251.
Lavelle P., 1997. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv. Ecol. Res., 27, 93-132.
Lavelle P. & Martin A., 1992. Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol. Biochem., 24(12), 1491-1498.
Lavelle P. & Gilot C., 1994. Priming effects of macroorganisms on microflora: a key process of soil function? In: Ritz K., Dighton J. & Giller K., eds. Beyond the biomass: compositional and functional analysis of soil microbial communities. Chichester, UK: Wiley, 173-180.
Lavelle P. & Spain A.V., 2001. Soil ecology. Dordrecht, The Netherlands: Kluwer Academic.
Lee K.E., 1985. Earthworms: their ecology and relationships with soil and land use. New York, NY, USA: Academic Press, Inc.
Lee K.E. & Foster R.C., 1991. Soil fauna and soil structure. Austr. J. Soil Res., 29(6), 745-775.
Leroy B.L.M. et al., 2007. The quality of exogenous organic matter: short-term influence on earthworm abundance. Eur. J. Soil Biol., 43(1), 196-200.
Leroy B.L.M. et al., 2008. Earthworm population dynamics as influenced by the quality of exogenous organic matter. Pedobiologia, 52(2), 139-150.
Li X., Fisk M.C., Fahey T.J. & Bohlen P.J., 2002. Influence of earthworm invasion on soil microbial biomass activity in a northern hardwood forest. Soil Biol. Biochem., 34(12), 1929-1937.
Liu W. et al., 2006. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ. Geochem. Health, 28(1-2), 133-140.
Lofs-Holmin A., 1983. Earthworm population dynamics in different agricultural rotations. In: Satchell J.E., ed. Earthworm ecology - from Darwin to vermiculture. London: Chapman & Hall, 151-160.
Lowe C.N. & Butt K.R., 2002. Influence of organic matter on earthworm production and behaviour: a laboratory-based approach with applications for soil restoration. Eur. J. Soil Biol., 38(2), 173-176.
Lukkari T., Teno S., Vaisanen A. & Haimi J., 2006. Effects of earthworms on decomposition and metal availability in contaminated soil: microcosm studies of populations with different exposure histories. Soil Biol. Biochem., 38(2), 359-370.
Mariani L. et al., 2007. What happens to earthworm casts in the soil? A field study of carbon and nitrogen dynamics in Neotropical savannahs. Soil Biol. Biochem., 39(3), 757-767.
McLean M.A. & Parkinson D., 2000. Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biol. Biochem., 32(3), 1671-1681.
McLean M.A., Migge-Kleian S. & Parkinson D., 2006. Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biol. Invasions, 8(6), 1257-1273.
Monroy F., Aira M. & Dominguez J., 2008. Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl. Soil Ecol., 39(2), 127-132.
Morris G.M., 1985. Secretory cells in the clitellar epithelium of Eisenia fetida (Annelida, Oligochaeta): a histochemical and ultrastructural study. J. Morphol., 185(1), 89-100.
Mummey D.L., Rillig M.C. & Six J., 2006. Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions. Soil Biol. Biochem., 38(7), 1608-1614.
Nunan N. et al., 2003. Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol. Ecol., 44(2), 203-215.
Ortiz-Ceballos A.I., Pena-Cabriales J.J., Fragoso C. & Brown G.G., 2007. Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch. Biol. Fertil. Soils, 44(1), 181-186.
Padmavathiamma P.K., Li LY. & Kumari U.R., 2008. An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresour. Technol., 99(6), 1672-1681.
Pedersen J.C. & Hendriksen N.B., 1993. Effect of passage through the intestinal track of detritivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacterial. Biol. Fertil. Soils, 16(3), 227-232.
Peigné J. et al., 2009. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res., 104(2), 207-214.
Reinecke A.J., Albertus R.M.C., Reinecke S.A. & Larink O., 2008. The effects of organic and conventional management practices on feeding activity of soil organisms in vineyards. Afr. Zool., 43(1), 66-74.
Rizhiya E. et al., 2007. Earthworm activity as a determinant for N2O emission from crop residue. Soil Biol. Biochem., 39(8), 2058-2069.
Rudi K., Ødegard K., Løkken T.T. & Wilson R., 2009. A feeding induced switch from a variable to a homogenous state of the earthworm gut microbiota within a host population. PloS One, 4(10), e7528.
Sampedro L. & Dominguez J., 2008. Stable isotope natural abundance (d13C and d15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Appl. Soil Ecol., 38(2), 91-99.
Sanz-Montero M.E. & Rodriguez-Aranda J.P., 2009. Silicate bioweathering and biomineralization in lacustrine microbialites: ancient analogues from the Miocene Duero Basin, Spain. Geol. Mag., 146(4), 527-539.
Scheu S. et al., 2002. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia, 133(2), 254-260.
Schönholzer F., Hahn D. & Zeyer J., 1999. Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol. Ecol., 28(3), 235-248.
Shaw C. & Pawluk S., 1986. Faecal microbiology of Octolasion tyrtaeum, Aporrectodea turgida and Lumbricus terrestris and its relation to the carbon budgets of three artificial soils. Pedobiologia, 29(6), 377-389.
Singleton D.R., Hendrix P.F., Coleman D.C. & Whitman W.B., 2003. Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol. Biochem., 35(12), 1547-1555.
Six J., Elliott E. & Paustian K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem., 32(14), 2099-2103.
Six J. et al., 2002. Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie, 22, 755-775.
Snyder B.A., Boots B. & Hendrix P.F., 2009. Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native North American millipedes (Pseudopolydesmus erasus, Polydesmidae): effects on carbon cycling and soil structure. Soil Biol. Biochem., 41(7), 1442-1449.
Stockdale E.A., Watson CA., Black H.I.J. & Philipps L., 2006. Do farm management practices alter below-ground biodiversity and ecosystem function? Implications for sustainable land management. JNCC Report No. 364. Peterborough, UK: Joint Nature Conservation Committee.
Suarez E.R. et al., 2004. Effects of exotic earthworms on soil phosphorous cycling in two broadleaf temperate forests. Ecosystems, 7(1), 28-44
Sugumaran P. & Janarthanam B., 2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J. Agric. Sci., 3(3), 350-355.
Teng S.K., 2012. Evaluation on physical, chemical and biological properties of casts of geophagous earthworm Metaphire tschiliensis tschiliensis. Sci. Res. Essays, 7(10), 1169-1174.
Thakuira D. et al., 2010. Gut wall bacteria of earthworms: a natural selection process. ISME J., 4, 357-366.
Tisdall J.M. & Oades J.M., 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci., 33(2), 141-163.
Tiunov A.V. & Scheu S., 2000. Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biol. Biochem., 32(2), 265-275.
Van Eekeren N. et al., 2008. Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl. Soil Ecol., 40(3), 432-446.
Wolf D. & Wagner G., 2005. Carbon transformations and soil organic matter formation. In: Sylvia D., Fuhrmann J., Hartel P. & Zuberer D., eds. Principles and applications of soil microbiology. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 285-332.
Wolter C. & Scheu S., 1999. Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia, 43(6), 891-900.
Wolters V. & Joergensen R.G., 1992. Microbial carbon turnover in beech forest soils worked by Aporrectodea caliginosa (Savigny) (Oligochaeta, Lumbricidae). Soil Biol. Biochem., 24(2), 171-177.
Woomer P.L. & Swift M.J., 1994. The biological management of tropical soil fertility. Chichester, UK: John Wiley and Sons.
Wrage N., Velthof G.L., Van Beusichem M.L. & Oenema O., 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem., 33(12-13), 1723-1732.
Zhang B.G. et al., 2000. Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol. Biochem., 32(14), 2055-2062.
Zhang Q.L. & Hendrix P.F., 1995. Earthworm (Lumbricus rubellus and Aporrectodea caliginosa) effects on carbon flux in soil. Soil Sci. Soc. Am., 59(3), 816-823.