Article (Périodiques scientifiques)
Computational homogenization of cellular materials
Nguyen, Van Dung; Noels, Ludovic
2014In International Journal of Solids and Structures, 51 (11-12), p. 2183-2203
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
2014_IJSS_FOAM.pdf
Postprint Auteur (3.24 MB)
Télécharger

NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Solids and Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Solids and Structures, 51 (11-12), 2014 DOI: 10.1016/j.ijsolstr.2014.02.029


Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computational homogenization; Periodic condition; Honeycomb; Localization; Discontinuous Galerkin; FEM; Path following; LIMARC
Résumé :
[en] In this work we propose to study the behavior of cellular materials using a second–order multi–scale computational homogenization approach. During the macroscopic loading, micro-buckling of thin components, such as cell walls or cell struts, can occur. Even if the behavior of the materials of which the micro–structure is made remains elliptic, the homogenized behavior can lose its ellipticity. In that case, a localization band is formed and propagates at the macro–scale. When the localization occurs, the assumption of local action in the standard approach, for which the stress state on a material point depends only on the strain state at that point, is no–longer suitable, which motivates the use of the second-order multi–scale computational homogenization scheme. At the macro–scale of this scheme, the discontinuous Galerkin method is chosen to solve the Mindlin strain gradient continuum. At the microscopic scale, the classical finite element resolutions of representative volume elements are considered. Since the meshes generated from cellular materials exhibit voids on the boundaries and are not conforming in general, the periodic boundary conditions are reformulated and are enforced by a polynomial interpolation method. With the presence of instability phenomena at both scales, the arc–length path following technique is adopted to solve both macroscopic and microscopic problems.
Centre/Unité de recherche :
Computational & Multiscale Mechanics of Materials
Disciplines :
Science des matériaux & ingénierie
Ingénierie mécanique
Auteur, co-auteur :
Nguyen, Van Dung  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Langue du document :
Anglais
Titre :
Computational homogenization of cellular materials
Date de publication/diffusion :
juin 2014
Titre du périodique :
International Journal of Solids and Structures
ISSN :
0020-7683
eISSN :
1879-2146
Maison d'édition :
Pergamon Press (part of Elsevier Science), Oxford, Royaume-Uni
Volume/Tome :
51
Fascicule/Saison :
11-12
Pagination :
2183-2203
Peer reviewed :
Peer reviewed vérifié par ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Intitulé du projet de recherche :
ARC 09/14-02 BRIDGING - From imaging to geometrical modelling of complex micro structured materials: Bridging computational engineering and material science
Organisme subsidiant :
DGENORS - Communauté française de Belgique. Direction générale de l’Enseignement non obligatoire et de la Recherche scientifique
Disponible sur ORBi :
depuis le 20 février 2014

Statistiques


Nombre de vues
455 (dont 163 ULiège)
Nombre de téléchargements
551 (dont 34 ULiège)

citations Scopus®
 
65
citations Scopus®
sans auto-citations
59
OpenCitations
 
45
citations OpenAlex
 
70

Bibliographie


Publications similaires



Contacter ORBi