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Abstract

In this work we propose to study the behavior of cellular materials using a second–order multi–scale computational homogenization
approach. During the macroscopic loading, micro-buckling of thin components, such as cell walls or cell struts, can occur. Even
if the behavior of the materials of which the micro–structure is made remains elliptic, the homogenized behavior can lose its
ellipticity. In that case, a localization band is formed and propagates at the macro–scale. When the localization occurs, the
assumption of local action in the standard approach, for which the stress state on a material point depends only on the strain state at
that point, is no–longer suitable, which motivates the use of the second-order multi–scale computational homogenization scheme.
At the macro–scale of this scheme, the discontinuous Galerkin method is chosen to solve the Mindlin strain gradient continuum.
At the microscopic scale, the classical finite element resolutions of representative volume elements are considered. Since the
meshes generated from cellular materials exhibit voids on the boundaries and are not conforming in general, the periodic boundary
conditions are reformulated and are enforced by a polynomial interpolation method. With the presence of instability phenomena at
both scales, the arc–length path following technique is adopted to solve both macroscopic and microscopic problems.

Keywords: Computational homogenization, Periodic condition, Honeycomb, Localization, Discontinuous Galerkin, FEM, Path
following

1. Introduction

Nowadays, cellular materials are used in many engineering applications because of their attractive properties, e.g.
light weight, high specific stiffness, good damping, high shock absorbability, etc [1]. Their mechanical properties
depend not only on the intrinsic properties of the materials of which the cell walls and cell struts are made but also on
the micro–morphology, i.e. the spatial distribution of cells (e.g. size, shape, etc). Because of the increase of material
requirements for specific applications, for which the required mechanical properties can be achieved by manipulating
the micro–structure, the relation between the structural behavior and the microscopic properties must be evaluated.

In experimental studies the cellular materials exhibit a complex mechanical behavior because of the presence of
the size effects, as shown for example by Andrews et al. [2], and of the localization phenomena due to micro–buckling
of thin components (cell walls, cell struts), as discussed for example by Papka et al. [3], Zhu et al. [4], Bart-Smith et al.
[5], or Jang et al. [6], which may be enhanced by plastic deformation and reduces strongly the structural stiffness. In
finite element analyzes, there are basically three different approaches used to study the behavior of cellular materials:

∗Corresponding author; Phone: +32 4 366 4826; Fax: +32 4 366 9505
Email address: L.Noels@ulg.ac.be (L. Noels)

1



Author / International Journal of Solids and Structures 00 (2014) 1–35 2

(i) the microscopic approach, (ii) the macroscopic approach, and (iii) the multi–scale computational approach. In
the first approach, the detailed structure is considered by using the standard finite element formulation such as beam
elements as proposed by Tekoglu et al. [7], Mangipudi et al. [8], Gibson and Ashby [1] and Chen et al. [9]. However,
the use of direct simulations to model large problems by finite element analyzes can lead to an enormous number of
unknowns. The solution of the resulting equations is still a challenge for actual modern computers. Therefore, this
method is suitable for the problems with limited sizes. In the second one, the cellular structure is considered as a
continuum medium and the phenomenological material model is applied, see for example the works by Forest et al.
[10] and Hanssen et al. [11]. Although the efficiency is higher than for the first approach, this method is still limited by
the fact that the material model and its parameters are difficult to be identified. Moreover the micro–structure evolution
during the macroscopic loading cannot be observed. The last method, also–called FE2, is a combination of the two
first approaches in which two separate boundary value problems (BVPs) are defined at two separate scales, see Fig. 1.
At the macroscopic scale, the macroscopic BVP is considered as a continuum medium and, at the microscopic scale, a
microscopic BVP is associated to each macroscopic material point and contains all heterogeneities. Each microscopic
BVP is defined on a representative volume element (RVE) and is associated with an appropriate microscopic boundary
condition related to the macroscopic quantities, e.g macroscopic strains. The geometrical and material non–linearities
at work on the micro–structure are explicitly modeled by using an arbitrary geometrically non–linear framework and
arbitrary non–linear constitutive models. From the resolution of the microscopic BVPs, the macroscopic stress–strain
relation is always available under the form of a homogenized constitutive law to be used in a macro–scale problem,
see for example the developments by Yvonnet et al.[17], Laroussi et al. [18], Ohno et al. [19], and by Okumura et al.
[20, 21], or under the form of a scale transition problem, see for example the developments by Sehlhorst et al. [12],
Kouznetsova et al. [13, 14], Ebinger et al. [15], Onck et al. [16].

Strain tensors

Stress tensors

(a) (b)

Figure 1. Multi–scale computational modeling of cellular materials: (a) macroscopic homogenized continuum medium, (b) micro–structure with
cell walls and void parts. In the scale transition, the microscopic problem defines its boundary condition depending on the macroscopic strains and
computes the macroscopic stresses and macroscopic tangents.

When considering FE2 methods, the scale transition can be formulated as a first–order scheme by using the stan-
dard continuum theory at both macro– and micro–scales [12, 13] or as a second–order scheme with a generalized
continuum theory applied at the macro–scale, e.g. a Cosserat continuum [15, 16] or a Mindlin strain gradient contin-
uum [14]. Compared to the first–order schemes, the second–order ones can deal with size effects and some localization
phenomena because of the accounting of the higher–order terms related to the higher–order strains (e.g. gradient of
deformation gradient, etc). However, the second–order schemes cannot resolve the strong localization bands exhibit-
ing deformations beyond a quadratic nature in the displacement field [22]. In case of a strong localization band, other
approaches should be used, e.g. multi–scale enhanced schemes with a discontinuity enrichment at the macro–scale,
see the work of Nguyen et al. [23], Massart et al. [24] and Coenen et al. [25]. In spite of their limitations, the
second–order schemes are applicable for moderate localization phenomena in cellular materials. This work is thus
restricted to the study of localization onsets and of moderate loadings for which the self–contact phenomena of cell
walls have not yet happened.

In this work the presence of localization phenomena in cellular structures motivates the use of the second–order
multi–scale computational homogenization scheme using a macroscopic Mindlin strain gradient continuum [14, 26,
27]. In this second–order scheme, both the deformation gradient and its gradient are used to define the microscopic
boundary condition. The macroscopic stresses (first Piola–Kirchhoff and higher order ones) are calculated by using
the generalized version of the Hill-Mandel homogenization principle. For cellular materials, the thickness of the
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localization band is comparable to or slightly larger than the characteristic size of the micro–structure. As it will be
shown in this paper, although we are clearly at the edge of the separation of scales, the second–order homogenization
method remains accurate when the localization band present at the macroscopic scale is of a size larger than the RVE
size. For periodic cellular materials it is the case as the microscopic BVP can be limited to a single cell study. In that
case, the usual microscopic boundary conditions can still be used. Note however that to capture instability phenomena
we introduce some different randomness in each micro–problem studied at each macroscopic Gauss point. As the
instabilities are considered at both scales, the path following method [28, 29, 30, 31, 32, 33, 34, 35, 36] is used to
solve both the macroscopic and the microscopic BVPs.

In order to solve the Mindlin strain gradient continuum in this second–order scheme, instead of using a specific
finite element formulation as the mixed formulation [14, 26], an implementation based on a discontinuous Galerkin
method is shown to be particularly efficient to constrain weakly the continuities of the displacement field and of its
gradient [27]. This method can be easily integrated into conventional finite element codes and parallelized at the
macroscopic scale by using face–based ghost elements [37, 38]. In that context the homogenization is viewed as a
usual constitutive law from the macro-finite element, and this constitutive law solves another finite–element problem:
the microscopic problem. In order to consider large problems, the multi–scale problem is not only parallelized at the
macro–scale by face–based ghost elements but also by distributing the microscopic problems of a macro–partition
between several processors.

At the microscopic scale, classical finite element resolutions of RVEs are considered. In a general problem,
three classical boundary conditions, which are linear displacement boundary condition (Dirichlet condition), minimal
kinematic boundary condition (Neumann condition) and periodic boundary condition can be used. Many numerical
studies show that the periodic boundary condition provides a better estimation than other boundary condition types
[39, 40, 41, 42]. For problems involving localization at the micro–scale, the boundary condition should be reformu-
lated to account for this localization direction [43]. However, in this work, the localization bands at the macro–scale
have a size larger than the size of the micro–scale problem and the classical microscopic boundary conditions can be
used. The periodic boundary condition is chosen because of its efficiency. The implementation of the periodic bound-
ary condition in case of conformal meshes is easy by constraining matching nodes. But meshes generated from the
cellular materials are normally non–conformal because of their random spatial distribution. For these non–conformal
meshes, some methods are available to enforce the periodic boundary condition in first–order schemes, such as the
master/slave approach [44], the weak periodicity [41], the local implementation [45] and in a more general way as the
interpolation polynomial interpolation [42]. As the two first methods cannot be used because of the dominant presence
of voids on the boundary, see Fig. 1b, the polynomial interpolation method is adopted in this work and extended to
the second–order FE2 method.

The organization of the paper is as follows. In Section 2, the second–order multi–scale computational homoge-
nization scheme is briefly recalled. The Section 3 presents the extension of the polynomial interpolation method for
imposing the periodic boundary condition in the second–order scheme for micro–structures exhibiting many voids at
the boundary. The path following method used for both the macroscopic and microscopic BVPs is presented in Sec-
tion 4. We provide in Section 5 some numerical examples in which the ability of this approach to capture moderate
localization bands is shown.

2. Second–order multi–scale computational homogenization approach

In this section, the second–order multi–scale computational homogenization approach (see Fig. 1) based on the
discontinuous Galerkin (DG) formulation [27] is briefly recalled. Within this scheme, the macroscopic Mindlin strain
gradient continuum is solved by using the DG method while the microscopic problem is solved by using the classical
finite element formulation.

2.1. Macroscopic discontinuous Galerkin formulation

When using the total Lagrange approach, the first Piola–Kirchhoff stress P̄ and the higher–order stress Q̄, which
are energetically conjugate with the deformation gradient F̄ = I + ū ⊗ ∇0 and its gradient Ḡ = F̄ ⊗ ∇0 = ū ⊗ ∇0 ⊗ ∇0
respectively, are used to formulate the continuum theory. The higher–order stress and the gradient of deformation
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gradient are third order tensors and satisfy the symmetrical properties Q̄i jk = Q̄ik j and Ḡi jk = Ḡik j. The strong form of
the Mindlin strain gradient continuum [13, 46] is given in the body B0 by

P̄
(
X̄
)
· ∇0 − Q̄

(
X̄
)

: (∇0 ⊗ ∇0) = 0 ∀X̄ ∈ B0 . (1)

Besides the classical boundary conditions related to the displacement ū on the Dirichlet boundary part and to the
traction per reference unit surface T̄ on the Neumann boundary part, the high–order boundary conditions of nor-
mal gradient of displacement Dū and of the double traction per reference unit surface R̄ are added to complete the
formulation statement. These boundary conditions are

ū = ū0 ∀X̄ ∈ ∂DB0 ,

T̄ = µ̄T̄0 ∀X̄ ∈ ∂N B0 ,

Dū = Dū0 ∀X̄ ∈ ∂T B0 ,

R̄ = µ̄R̄0 ∀X̄ ∈ ∂M B0 ,

(2)

where the traction per reference unit surface T̄ is given by

T̄ =
(
P̄ − Q̄ · ∇0

)
· N̄ +

(
Q · N̄

)
·

(
N̄

s
∇0 ·N̄−

s
∇0

)
, (3)

where the double stress R̄ is given by

R̄ = Q̄ :
(
N̄ ⊗ N̄

)
, (4)

where the normal gradient and surface gradient operators are respectively defined by

D = N̄ · ∇0 , (5)
s
∇0=

(
I − N̄ ⊗ N̄

)
· ∇0 , (6)

where N̄ is the outward normal in the reference configuration, and where µ̄ is the load parameter that gives the load
intensity with a view to the introduction of the path following method. The strain gradient problem (1) with its
boundary conditions (2) is completed by the constitutive law specifying the stress–strain relationships at time t:

P̄ (t) = P
{
F̄(τ), Ḡ(τ), τ ∈ [0 , t]

}
and

Q̄ (t) = Q
{
F̄(τ), Ḡ(τ), τ ∈ [0 , t]

}
. (7)

In the multiscale framework, these relationships are obtained from the resolutions of the micro–scale problems as
explained in Section 2.2.

The macroscopic problem defined by the Eqs. (1, 2, 7) is solved by recourse to the DG method as proposed by
Nguyen et al. [27]. In this method, the body B0 is discretized into finite elements Ωe

0, see Fig. 2. The C1 continuity of
the displacement field across the element boundaries is weakly enforced while the C0 continuity can be either weakly
imposed using the DG method or strongly constrained using the conventional C0 displacement–based finite element
formulation. Thus, two formulations can be used: (i) the full DG (FDG) formulation, which constrains weakly the C0

and C1 continuities and (ii) the enriched DG (EDG) formulation for which some higher–order terms are added into
the conventional C0 finite element framework. Because the FDG formulation allows the jump discontinuities of the
displacement field and of its gradient, the definitions of its displacement manifold and of its constrained counterpart
are given by

Uk =
{
ū ∈ L2 (B0) | ū|Ωe

0
∈ Pk ∀Ω0

e ∈ B0

}
, (8)

Uk
c =

{
δū ∈ Uk | δū|∂DB0 = 0

}
, (9)
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Figure 2. Finite element discretization of the reference body B0: (a) finite element mesh and (b) details of two adjacent elements. The element
boundary, the internal boundary and the outward normals between two elements are represented.

where Pk is the space of polynomial functions of order up to k with support Ωe
0. The functional spaces of the EDG

formulation are easily deduced by defining

Uk =
{
ū ∈ H1 (B0) | ū|Ωe

0
∈ Pk ∀Ω0

e ∈ B0

}
, (10)

Uk
c =

{
δū ∈ Uk | δū|∂DB0 = 0

}
, (11)

in which the discontinuities in ū and δū simply vanish from the formulation. Considering a DG formulation allows
the strain–gradient continuum to be solved using traditional finite elements. Usual continuous shape functions are
considered in the EDG formulation and the number of degrees of freedom in this case is the same as for conventional
C0 finite elements. On the contrary, the FDG method suffers from an explosion in the number of degrees of freedom
at the macroscopic scale as the shape functions are now discontinuous. However, in the computational multiscale
framework the computational resources are mainly due to the resolutions of the microscopic problems, so that the
FDG method remains attractive in the case of parallel implementations as it allows using face–based ghost elements
[37, 38].

The details of the mathematical developments to establish the DG formulation are presented in [27] and are
summarized as finding ū ∈ Uk such that

a (ū, δū) = b (δū) ∀δū ∈ Uk
c , (12)

where the linear term b (δū)is given by

b (δū) = µ̄

(∫
∂N B0

T̄0 · δū d∂B +

∫
∂M B0

R̄0 · Dδū d∂B
)
, (13)

and where the term a (ū, δū) is given by

a (ū, δū) = abulk (ū, δū) + aPI (ū, δū) + aQI (ū, δū) , (14)

with the bulk term

abulk (ū, δū) =

∫
B0

[
P̄ (ū) : F̄ (δū) + Q̄ (ū)

... Ḡ (δū)
]

dB , (15)
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with the first–order interface terms

aPI (ū, δū) =

∫
∂I B0

[
~δū� ·

〈 ¯̂P (ū)
〉
· N̄− + ~ū� ·

〈 ¯̂P (δū)
〉
· N̄−

+ ~ū� ⊗ N̄− :
〈
βP

hs
C0

〉
: ~δū� ⊗ N̄−

]
d∂B , (16)

and with the second–order interface terms

aQI (ū, δū) =

∫
∂I B0

[
~δū ⊗ ∇0� :

〈
Q̄ (ū)

〉
· N̄− + ~ū ⊗ ∇0� :

〈
Q̄ (δū)

〉
· N̄−

+ ~ū ⊗ ∇0� ⊗ N̄−
...

〈
βQ

hs
J0

〉
... ~δū ⊗ ∇0� ⊗ N̄−

]
d∂B . (17)

In these interface terms, ¯̂P = P̄ − Q̄ · ∇0, C0 = ∂P̄
∂F̄ is the tangent operator of the constitutive law P̄ in terms of

the deformation gradient F̄, J0 =
∂Q̄
∂Ḡ is the higher–order tangent operator of the constitutive law Q̄ in terms of the

higher–order gradient Ḡ, and βP and βQ are the stability parameters. As the sole purpose of the quadratic terms is to
ensure the stability of the method, C0 and J0 can be chosen constant during the simulations and are evaluated at the
zero–strain state corresponding to F̄ = I and Ḡ = 0 , which explains the superscript 0. Using these tensors has two
advantages. On the one hand, it avoids evaluating their derivatives during the Newton–Raphson iterations, and on the
other hand, it prevents the stability terms to vanish in case of material softening [27].

The two interface terms (16) and (17) are typical from a DG formulation and they ensure the consistency of the
method, the compatibility of the field (derivatives) and the stability of the methodology by the parameters βP and
βQ. These interface terms are computed on the interfaces between two finite elements, see Fig. 2, and require the
evaluation of the jump and mean values defined by

~•� = •+ − •− and (18)

〈•〉 =
1
2

(
•+ + •−

)
, (19)

where the bullets represent a generic field with

•+ = lim
ε→0+
•
(
X̄ + εN̄−

)
and •− = lim

ε→0+
•
(
X̄ − εN̄−

)
. (20)

In case of the EDG formulation, the first–order term aPI (ū, δū) vanishes and only aQI (ū, δū) remains.
When considering a finite element approximation, the weak form (12) is equivalent to the non–linear equation

f̄int (ū) − µ̄q̄ = 0 , (21)

where f̄int (ū) is the internal force computed from the bulk and surface integrals and where

q̄ =

∫
∂N B0

T̄0 · δū d∂B +

∫
∂M B0

R̄0 · Dδū d∂B . (22)

2.2. Microscopic classical continuum

In the second–order homogenization scheme, the microscopic problem is formulated in the classical continuum.
By using the total Lagrange approach, the problem is formulated in terms of the first Piola–Kirchhoff stress P and
of the deformation gradient F = I + u ⊗ ∇0. The BVP is defined on a representative volume element (RVE) V0 of
boundary ∂V0. In the absence of the body forces, the strong form is given by

P (X) ⊗ ∇0 = 0 ∀X ∈ V0 . (23)
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Figure 3. Deformation of a square–shaped representative volume element. The deformation configuration is driven by the macroscopic deformation
gradient F̄ and by its gradient Ḡ. The non–linear mapping x is composed of the homogeneous part F̄ ·X + 1

2 Ḡ : (X ⊗ X) and of the fluctuation part
w. The positive and negative parts of the RVE boundary are depicted.

In order to achieve the scale transition, the boundary condition results from the macroscopic variables, and the micro-
scopic fluctuation of displacement field w on the RVE is defined as

w = u −
(
F̄ − I

)
· X +

1
2

Ḡ : (X ⊗ X) , (24)

where u is the displacement field on the RVE and where F̄ and Ḡ are respectively the macroscopic deformation
gradient and its gradient obtained from the macroscopic problem. The deformation of a square–shaped RVE sample
under the effect of the macroscopic strains with the fluctuation w is shown in Fig. 3. The kinematic constraints

1
V0

∫
V0

F dV = F̄ (25)

is a priori satisfied by the second–order periodic boundary condition [14, 26, 27], which leads to the following
kinematic constraints of the fluctuation field on the RVE boundary

w(X+) = w(X−) ∀X− ∈ ∂V−0 and matching X+ ∈ ∂V+
0 , and (26)∫

S i

w(X) d∂V = 0 ∀S i ⊂ ∂V−0 , (27)

where ∂V−0 and ∂V+
0 are respectively the negative and positive parts of the boundary ∂V0 and where S i is one surface

on the negative part ∂V−0 , see Fig. 3.
The continuum problem (23) with its boundary conditions (24, 26, 27) is completed by the constitutive law speci-

fying the stress–strain relationship at time t:

P (t) = F {F(τ), τ ∈ [0 , t]} . (28)

This relationship is detailed in Appendix A in the case of elasto–plastic materials.
Using a finite element analysis to solve (23) and using the Lagrange multipliers λ to take into account the kinematic

constraints resulting from Eqs. (24, 26, 27), see [47, 27], lead to the microscopic non–linear equations rewritten in
the matrix form as fint(w) = CTλ ,

Cw = 0 ,
(29)

where C is the constraints matrix. This matrix is detailed in the next section in case of cellular materials.
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2.3. Scale transition

For the scale transition, the generalized version of Hill–Mandel homogenization principle [13] is satisfied as

P̄ : δF̄ + Q̄
... δḠ =

1
V0

∫
V0

P : δF dV , (30)

and the macroscopic stresses are given by

P̄ =
1

V0

∫
V0

P dV and (31)

Q̄ =
1

2V0

∫
V0

P ⊗ X + (P ⊗ X)RC dV , (32)

where ARC
i jk = Aik j is the right transpose of any third order tensor A. From the homogenized stresses, the first–order

and second–order tangents are respectively defined by

L̄ =
∂P̄
∂F̄

and J̄ =
∂Q̄
∂Ḡ

. (33)

and the cross tangents are defined by

L̄J =
∂P̄
∂Ḡ

and J̄L =
∂Q̄
∂F̄

. (34)

3. Second–order periodic boundary condition with the polynomial interpolation method

Boundary node

Control node

Figure 4. The polynomial interpolation method to enforce the periodic boundary condition on a representative volume element with the presence
of void parts on the boundary.

The enforcement of the periodic boundary condition for conforming meshes can easily be done by directly con-
straining the matching nodes. For cellular materials, since the obtained meshes are normally non–conforming (in this
paper this is due to the perturbations introduced), the matching nodes method cannot be applied. Moreover, if the RVE
boundary possesses a dominant void part, the constraint (27) can be divided into the solid integral term computed on
S solid

i and the void integral term computed on S void
i such as∫

S i

w(X) d∂V =

∫
S solid

i

w(X) d∂V +

∫
S void

i

w(X) d∂V = 0 . (35)

Because there is no material on S void
i , the void integral term is non-determined and the constraint (27) cannot be

enforced. This motivates the use of other methods for a general mesh setting.
Some methods for non–conformal meshes are available in the literature as the weak periodicity approach [41], the

master/slave approach [44], the local implementation approach [45] and the polynomial interpolation approach [42]
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for examples. Among these methods, only the polynomial interpolation method [42] is suitable for enforcing both the
periodicity on non–conformal meshes and the constraint (27) with the presence of void parts on the RVE boundary.

The basic idea of the polynomial interpolation method is to guarantee the periodic boundary condition by inter-
polating the perturbation field on the negative and positive parts of the RVE boundary with one interpolant function
whose form is defined. This interpolation requires a set of control nodes which can be created or chosen from existing
ones. An example of distribution of control nodes and boundary nodes on the RVE boundary is shown in Fig. 4 in
which the set of control nodes is added on the negative part. The periodic boundary condition with constraints (26,
27) are respectively rewritten in the interpolation form, as

w− (X) =
∑

k

Nk (X) wk +
∑

k

Mk (X) θk , (36)

w+ (X) =
∑

k

Nk (X) wk +
∑

k

Mk (X) θk and (37)

∫
S⊂∂V−

∑
k

Nk (X) wk +
∑

k

Mk (X) θk

 d∂V = 0 , (38)

where wk and θk are respectively the fluctuation and additional unknowns at the control node k. The choice of wk and
θk depends on the nature of the interpolant functions N (X) and M (X). For example, if the Lagrange formulation is
used, only wk is used while if the cubic spline formulation is used θk , known as the tangent at segment extremities, is
added, see [42]. Note that the last equation (38), which corresponds to the equation (27), is equivalent to fix the rigid
body modes.

Using Eq. (24), the periodic boundary condition of the second–order scheme is rewritten in terms of the displace-
ment unknowns, yielding

u− (X) −
∑

k

Nk (X) uk −
∑

k

Mk (X) θk = F̄ ·
X −∑

k

Nk (X) Xk


+

1
2

Ḡ :

X ⊗ X −
∑

k

Nk (X) Xk ⊗ Xk

 , (39)

u+ (X) −
∑

k

Nk (X) uk −
∑

k

Mk (X) θk = F̄ ·
X −∑

k

Nk (X) Xk


+

1
2

Ḡ :

X ⊗ X −
∑

k

Nk (X) Xk ⊗ Xk

 and (40)

∫
S⊂∂V−

∑
k

Nk (X) uk +
∑

k

Mk (X) θk

 d∂V = F̄ ·
∫

S∈∂V−

∑
k

Nk (X) Xk d∂V


+

1
2

Ḡ ·
∫

S∈∂V−

∑
k

Nk (X) Xk ⊗ Xk d∂V

 . (41)

By regrouping all the degrees of freedom of the boundary and control nodes in a unique vector ũb, the interpolation
form of the periodic boundary condition in the second–order scheme reads in the general matrix form

C̃ũb − g
(
F̄, Ḡ

)
= 0 , (42)

where C̃ and g are respectively the constraint coefficients matrix and the loading part which depends only on the
macroscopic strains for a specific RVE.

With a view toward the use of a path following method, the macroscopic strains are parametrized by a scalar
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variable µ with respect to the macroscopic strains such that

F̄(µ) = F̄0 + µ
(
F̄1 − F̄0

)
= F̄0 + µ∆F̄ and (43)

Ḡ(µ) = Ḡ0 + µ
(
Ḡ1 − Ḡ0

)
= Ḡ0 + µ∆Ḡ , (44)

where µ ∈ [0 1] and where the subscripts 0 and 1 denote the macroscopic previous and current strains respectively.
Using this parametrization, the right hand side g of Eq. (42) becomes

g(µ) = g
(
F̄0, Ḡ0

)
+ q

(
∆F̄,∆Ḡ

)
µ = g0 + qµ with q =

∂g
∂µ

. (45)

Equation (42) is thus rewritten in terms of the displacements vector u of the microscopic problem as

Cu − g0 − qµ = 0 , (46)

where C is the constraint matrix built from the boundary constraint matrix C̃. Finally the non–linear system of
equations (29) with linear constraints is rewritten in terms of the structural displacement vector as

fint(u) − CTλ = 0 ,
Cu − g0 − qµ = 0 ,
µ = 1

(47)

where the last equation µ = 1 implies the final equilibrium state corresponding to the applied macroscopic strains.
The non–linear system (47) is resolved by using the constraint projection strategy [26, 27] combined with the path
following method with arc–length increment control as detailed in section 4.

4. Path following strategy

The non–linear response of a structural analysis can be characterized by the presence of critical points and unstable
equilibrium paths. Because of these structural instabilities, the convergence of the conventional Newton–Raphson
strategy with a constant load during each loading step usually fails. As the path following method combined with
the arc–length increment constraint is commonly used to pass these critical points and to capture softening responses,
see e.g. [28, 29, 30, 31, 32] for elastic problems and e.g. [33, 34, 35, 36] for elasto–plastic problems, this method is
adopted in this work.

4.1. Solution of the macroscopic BVP

The macroscopic state vector is defined as [ūT µ̄]T . Because the previous state [ūT
n µ̄n]T is known, the current

state [ūT
n+1 µ̄n+1]T is determined by finding a displacement increment ∆ūn+1 and a load parameter increment ∆µ̄n+1

such that

ūn+1 = ūn + ∆ūn+1 and (48)
µ̄n+1 = µ̄n + ∆µ̄n+1 , (49)

for each arc–length increment ∆L which can be approximated by

∆L =

√
∆ūT

n+1∆ūn+1

Ψ2 + ∆µ̄2
n+1 , (50)

where Ψ is a constant parameter used to yield a dimensionless equation as the dimensions of ∆ūn+1 and ∆µ̄n+1 are
different. The value of Ψ is set at the computation beginning by an arbitrary value which has same magnitude as the
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displacement solution. The arc–length increment (50) leads to the quadratic constraint

h̄(∆ūn+1,∆µ̄n+1) =
∆ūT

n+1∆ūn+1

Ψ2 + ∆µ̄2
n+1 − ∆L2 = 0 . (51)

Thus the system of the non–linear equations (21) is completed by the arc–length constraint (51). From the defini-
tion of the macroscopic residual force

r̄ = f̄int − q̄µ̄, (52)

the non–linear system r̄(∆ūn+1, ∆µ̄n+1, ᾱ
i
n+1; ᾱi

n) = 0 ,
h̄(∆ūn+1, ∆µ̄n+1) = 0 ,

(53)

must be iteratively solved to find the displacement and the load parameter increments. In Eq. (53), ᾱi
n+1 and ᾱi

n are
the internal variables of the macroscopic problem, i.e. the complete state definition of the associated microscopic
problems, at time steps n + 1 and n respectively. The values ᾱi

n are known from the converged step n.
The resolution of the system of equations (53) follows the predictor–corrector scheme with an arc–length incre-

ment ∆L = Ln+1 − Ln for the arc–length interval [Ln Ln+1]. The predictor and corrector steps are summarized as
follows. Note that the symbols n and k denote respectively the step and the iteration indexes.

1. Macroscopic predictor step: k = 0

• The macroscopic force residual is first linearized around the converged solution at the arc–length incre-
ment as

r̄(∆ūn+1,∆µ̄n+1, ᾱ
i
n+1; ᾱi

n) = K̄∆ūn+1 − q̄∆µ̄n+1 = 0 , (54)

where K̄ is the structural stiffness matrix. As the macroscopic previous state is defined, r̄(0, 0, ᾱi
n; ᾱi

n) = 0
and the matrix K̄ is known, leading to ∆ūn+1 = v̄∆µ̄n+1 with v̄ = K̄−1q̄. Using the arc–length constraint
h̄(∆ūn+1, ∆µ̄n+1) = 0, the quadratic equation in ∆µ̄n+1 is found to be(

1 +
v̄T v̄
Ψ2

)
∆µ̄2

n+1 = ∆L2 , (55)

leading to two possible solutions

∆µ̄n+1 = ±
∆L
A

with A = 1 +
v̄T v̄
Ψ2 . (56)

• The load parameter increment ∆µ̄ takes one of two possible values above by following [30]:∆µ̄n+1 = ∆L
A if v̄T ∆ūconv

n ≥ 0 ,
∆µ̄n+1 = −∆L

A if v̄T ∆ūconv
n < 0 ,

(57)

where ∆ūconv
n is the displacement increment solution of the previous arc–length increment.

2. Convergence check step: Using the predicted displacement and load parameter, the macroscopic internal force is
computed from the finite element approximation of Eq. (12). Note that during the force evaluation, the internal
variables

(
ᾱi

n+1

)k
at iteration k are estimated from the displacement increment ∆ūn+1 and from the converged

internal variables at the previous step ᾱi
n, and not from the previous iteration in order to avoid any overload

during the corrections, such that (
ᾱi

n+1

)k
= Ā

(
∆ūn+1; ᾱi

n

)
, (58)
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which is governed by the material constitutive law. The macroscopic force residual r̄ is then estimated from Eq.
(52) and the macroscopic convergence criterion is defined by

ε̄ =
||r̄||

||f̄int|| + ||q̄µ̄||
< Tolerance . (59)

If this condition is true, the next arc–length increment follows, else the corrector step is applied.
3. Macroscopic corrector step: k = k + 1

• The macroscopic force residual r̄ is successively linearized in terms of the displacement increment δūk

and of the load parameter increment δµ̄k such that

r̄
(
∆ūn+1 + δūk,∆µ̄n+1 + δµ̄k,

(
ᾱi

n+1

)k
; ᾱi

n

)
= r̄

(
∆ūn+1,∆µ̄n+1,

(
ᾱi

n+1

)k−1
; ᾱi

n

)
+ K̄kδūk − q̄δµ̄k = 0 , (60)

where K̄k = ∂r̄
(
∆ūn+1,∆µ̄n+1,

(
ᾱi

n+1

)k−1
; ᾱi

n

)
/∂ū is the stiffness matrix. Equation (60) thus leads to

δūk = v̄kδµ̄k + d̄k
r , (61)

with v̄k =
(
K̄k

)
−1q̄ and d̄k

r = −
(
K̄k

)
−1r̄. By using Eq. (61), the arc–length constraint (51) h̄(∆ūn+1 +

δūk,∆µ̄n+1 + δµ̄k) = 0 leads to a quadratic equation in δµ̄k

A
(
δµ̄k

)2
+ Bδµ̄k + C = 0 , (62)

where

A = 1 +

(
v̄k

)T
v̄k

Ψ2 , (63)

B = 2

∆µn+1 +

(
v̄k

)T (
∆ūn+1 + d̄k

r

)
Ψ2

 and (64)

C =

(
∆ūn+1 + d̄k

r

)T (
∆ūn+1 + d̄k

r

)
Ψ2 + ∆µ2

n+1 − ∆L2 . (65)

Equation (62) has two roots

γ1,2 =
−B ±

√
B2 − 4AC
2A

, (66)

and the corrected increment δµ̄ takes one of these two values by following the argumentation of [30, 33]:δµ̄k = γ1 if (∆ūn+1)T
(
γ2v̄k + d̄k

r

)
≤ (∆ūn+1)T

(
γ1v̄k + d̄k

r

)
,

δµ̄k = γ2 if (∆ūn+1)T
(
γ1v̄k + d̄k

r

)
< (∆ūn+1)T

(
γ2v̄k + d̄k

r

)
.

(67)

• The displacement and load parameter increments are updated with the corrected values∆ūn+1 = ∆ūn+1 + δūk ,

∆µ̄n+1 = ∆µ̄n+1 + δµ̄k .
(68)

• One can now go back to the convergence check step 2.

4.2. Solution of the microscopic BVP
At the micro–scale, the non–linear system (47) with the Lagrange multipliers λ must be solved.
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Because of the linear independence of the linear constraints (46), the inversion of the matrix CCT exists. Thus the
Lagrange multipliers follow from the first equation of the non–linear system (47) multiplied by C, yielding

λ =
(
CCT

)−1
Cfint . (69)

The Lagrange multipliers can then be eliminated from the internal force residual equation of the non–linear system
(47), allowing the internal force residual to be defined as

0 = r =

[
I − CT

(
CCT

)−1
C
]

fint = QT fint , (70)

where Q = I − RC with RT =
(
CCT

)−1
C. Note that the matrices Q and R always exist. This equation is completed

by the definition of the constraints residual

0 = rc = Cu − g0 − qµ , (71)

from the second equation of the non–linear system (47).
The system of equations (70, 71) is iteratively solved until satisfying the third equation of the non–linear system

(47), i.e. the condition µ = 1, which corresponds to satisfying the constrained macro–deformations. Indeed with a
path following method the load parameter µ is also an unknown of the system. However in a multiscale framework,
contrarily to the macro–scale case, the load parameter is no longer free of constraints at the micro–scale as the
boundary condition of the microscale BVP is constrained strictly by the deformation gradient tensor and its gradient
resulting from the macro–scale computation. This iterative procedure is described here below.

The linearized form, with respect to the displacement ∆u and to the load parameter ∆µ, of the system (70, 71) is
considered:

r + QT K∆u = 0 and (72)
rc + C∆u − q∆µ = 0 , (73)

where K = ∂fint/∂u is the microscopic stiffness matrix. After some manipulations [48], the linearized form (72, 73) is
found to be equivalent to

r̃ + K̃∆u − q̃∆µ = 0 , (74)

with

r̃ = r +
(
CT −QT KR

)
rc , (75)

K̃ = CT C + QT KQ = K̃(u) and (76)
q̃ =

(
CT −QT KR

)
q = q̃(u) , (77)

where r̃, K̃ and q̃ are the effective residual vector, stiffness matrix and load vector respectively.
For each iteration k of the macroscopic time step from time tn to time tn+1 several time steps are required at the

microscopic scale. We thus denote the iterations and steps at the micro–scale by respectively k′ and n′ to avoid any
confusion. The microscopic state vector is defined by [uT µ]T . As the microscopic previous state [uT

n′ µn′ ]T is known,
the microscopic current state [uT

n′+1 µn′+1]T must be computed by finding a displacement increment ∆un′+1 and a load
parameter increment ∆µn′+1 such that

un′+1 = un′ + ∆un′+1 and (78)
µn′+1 = µn′ + ∆µn′+1 . (79)

13



Author / International Journal of Solids and Structures 00 (2014) 1–35 14

The non–linear system of equations (70, 71) is completed by an arc–length constraint

h(∆u,∆µ) =
∆uT ∆u
ψ2 + ∆µ2 − ∆l2 = 0 , (80)

where ∆l is the arc–length increment step and where ψ is the constant parameter used to yield a non-dimensionless
equation. The scale parameter ψ is set at the computation beginning by an arbitrary value which has the same mag-
nitude as the resulting displacement. Finally, the non–linear system of equations related to the microscopic BVP for
each iterative arc–length increment step is summarized as

r̃(∆un′+1,∆µn′+1, α
i
n′+1; αi

n′ ) = 0 and (81)
h(∆un′+1,∆µn′+1) = 0 . (82)

where αi
n′+1 and αi

n′ are the microscopic internal variables (stress, strain, plastic deformation, etc.) at the time steps
n′ + 1 and n′ respectively. The resolution of the system of equations (81, 82) for an arc–length interval [ln′ ln′+1] with
∆l = ln′+1 − ln′ follows the same predictor–corrector scheme as for the macroscopic BVP.

For each macroscopic arc–length increment ∆L, the microscopic BVPs are iteratively solved until the microscopic
solution corresponding to the prescribed macroscopic strains is obtained. The details of a typical iterative solution of
a microscopic BVP is summarized as follows:

1. Receive the macroscopic deformation gradient F̄ and its gradient Ḡ from the macroscopic BVP.
2. Assemble and parametrize the linear constraint (46).
3. Load the microscopic state reached at the end of the previous macro arc–length increment.
4. Adjust the arc–length increment ∆l
5. Microscopic predictor step: The predictor of ∆un′+1 and ∆µn′+1 are computed using a similar procedure as for

the macroscopic predictor, but by considering the effective stiffness K̃ and the effective load vector q̃ instead of
the macroscopic stiffness and macroscopic load vector. K̃ and q̃ are computed from Eqs. (76) and (77).

6. Check convergence: From the estimated values of the displacement and load parameter increments, the effec-

tive residual r̃ is computed. At each iteration index k′, the internal variables
(
αi

n′+1

)k′
are estimated from the

displacement increment ∆uk′
n′+1 and from the converged internal variables at the previous time step αi

n′ , such that(
αi

n′+1

)k′
= A

(
∆uk

n′+1; αi
n′
)
, (83)

which is governed by the material constitutive law. The convergence criterion is defined by

ε =
||r̃||
||fint||

< Tolerance . (84)

If this condition is satisfied, step 8 follows, else step 7 follows.
7. Microscopic corrector step: The displacement increment δuk′ and the load parameter increment δµk′ are com-

puted using a similar procedure as for the macroscopic case by using the effective stiffness and the effective load
vector instead of the macroscopic stiffness and macroscopic load vector. The displacement and load parameter
increments are thus updated following∆un′+1 = ∆un′+1 + δuk′ and

∆µn′+1 = ∆µn′+1 + δµk′ .
(85)

8. Control parameter updating step: µn′+1 = µn′ + ∆µn′+1.
(a) If µn′+1 ≤ 1,

• Update the displacement vector un′+1 = un′ + ∆un′+1.
• Compute and store the stress field corresponding to the current state.
• If µn′+1 < 1, assign the current state to the previous one and go to step. 4.
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• If µn′+1 = 1, go to step 9.
(b) Else if µn′+1 > 1, the last microscopic increment reaches a point beyond the constrained boundary

conditions arising from the macro-scale problem and the last computed micro–scale step n′ + 1 has to
be recomputed from the previous converged micro–scale step n′ by considering a new load increment
∆l = ∆µ = 1 − µn′ . The size of this new increment is obtained using an iterative conventional Newton–
Raphson step in order to obtain the exact condition µ = 1. Note that we cannot simply unload from the
last converged micro–scale step to reach µ = 1 in case of irreversible behaviors. Then go to step 4.

9. Final step: The homogenized stresses and the homogenized tangents are estimated from the microscopic solu-
tion, see [27].

Corrector 
step 

Update increment 

Solve all micro--BVPs 

Initialization 

End 

Predictor step 

YES 

YES 

NO 

NO 

Compute macro—strains      
    ,       at all Gauss points  

Assemble  

Store solution and 
set initial state for 
all micro—BVPs 

Send macro—strains  
to microscopic BVPs 

Homogenized 
stresses and 

tangents 

Adjust 

Compute  

Assemble          

Figure 5. Multi–scale computation with path following method. The “micro–solver” block computes the homogenized stresses and tangent
operators corresponding to the prescribed macroscopic strains.

This multi–scale computation methodology is schematized in Fig. 5. The micro–solver block is detailed in Fig.
6. The “initialization block” allows parallel simulations, see details in Appendix B. The parallel strategy is applied
on both scales. At the macroscopic scale the mesh is partitioned on several processors. At the microscopic scale each
microscopic BVP is solved in serial, but as a large number of microscopic BVPs are considered for each macro–scale
processor, the microscopic BVPs of a macro–scale partition are distributed to different processors. This parallelization
on a double level is summarized in Appendix B.

5. Numerical applications

In this section, the behavior of an hexagonal honeycomb structure under compression loading is studied by the
proposed DG–based homogenization multi–scale framework. At first, to demonstrate the ability of the polynomial
interpolation method to enforce the periodic boundary condition for cellular materials, a simple compression test of
a particular RVE is considered. First, the effect of the interpolation order is examined when extracting the elastic
homogenized properties corresponding to null macroscopic strains. Then, this microscopic BVP is solved by the path
following method with the presence of microscopic bucking, which might lead to the macroscopic loss of ellipticity.
Next, multi–scale simulations of a compression test of a plate made of this cellular material are conducted. For this
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Figure 6. Details of micro–solver block.

test of reduced dimensions, the result of a direct numerical simulation is available and is used to demonstrate the
accuracy of the multi–scale method and its non–dependency with the mesh size. A comparison of the memory and
CPU time requirements is also provided. The choice of the RVE size on the results is then discussed as well as the
effect of the imperfections in the honeycomb structure. Finally, a compression test of a center–hole plate is performed
in order to show the efficiency of this multi–scale framework for larger problems. For this test, the direct numerical
simulations could only be achieved using a high–memory computing node.

5.1. Definition of the hexagonal honeycomb structure

In the following numerical applications we consider the behavior of an hexagonal honeycomb structure. The
perfect structure is characterized by the cell wall length l = 1 mm and the thickness t = 0.01 mm as depicted in
Fig. 7 (left). The repeated unit (RU) is defined as the smallest repeated pattern as shown in Fig. 7 (right). In order
to govern the microscopic buckling patterns, a small random disturbance is added into the perfect structure with
a perturbation parameter δ, see Appendix C for details. The value of δ can vary to obtain different levels of the
structure imperfection. The structure porosity is about 89%. The honeycomb structure is supposed to be infinitely
long in the transverse direction so the plane strain state, in which ∂ui/∂X2 = 0 with i = 0, 1, 2, is considered.

The cell walls obey to a J2-hyperelastic–based elasto–plastic material law formulated in large strains, see Ap-
pendix A for details of this material model. The material parameters are K = 67.55 GPa, G = 25.9 GPa, σ0

y = 276.0
MPa and h = 6890.0 MPa where K is the initial bulk modulus, G is the initial shear modulus, σ0

y is the initial yield
stress and h is the hardening parameter.

5.2. Second–order periodic boundary condition with polynomial interpolation method

This section shows the efficiency of the polynomial interpolation method to enforce the periodic boundary con-
dition for cellular materials. For this purpose we consider a 2x2–RU RVE (see Fig. 7 for the repeated unit – RU –
definition) as an example, which is extracted from the hexagonal honeycomb structure described in section 5.1 with
the perturbation parameter δ = 5% (see Appendix C for details). Quadratic 6–node triangles with 3 Gauss points
are used to discretize the problem, see Fig. 8. The vertical and horizontal sizes of the RVE are equal to 3.46 mm
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Figure 7. Perfect hexagonal honeycomb structure of cell wall length l = 1 mm and cell wall thickness t = 0.1 mm (left) and a repeated unit (RU)
(right) containing 2 honeycomb cells. The RU width is l

√
3 and the RU height is 3l.

and 6 mm respectively. The use of an imperfect structure leads to a non–conformal mesh, so the periodic boundary
condition enforcement based on the matching nodes of two opposite boundaries cannot be used, motivating the use
of the polynomial interpolation method. In this section, the 2x2–RU RVE is chosen as an example to demonstrate the

Figure 8. Finite element mesh of a 2x2–RU RVE (including 4 RUs presented in Fig. 7 ) of width 3.46 mm and of height 6.0 mm, with wall length
l = 1 mm and wall thickness t = 0.1 mm. A perturbation of 5% is considered.

ability of the polynomial interpolation method to capture the deformed shapes of the cellular material. The effect of
the RVE size on the two–scale computations will be discussed in the coming application.

5.2.1. Effect of the interpolation order
In this section, we consider the effect of the interpolation order for two kinds of interpolant functions: the Lagrange

functions, in which case the interpolant order is the polynomial order, and cubic splines, in which case the interpolant
order is the number of segments, refer to [42] for implementation details. To this end we study the initial elastic
homogenized tangent operators, i.e. for the macroscopic deformation gradient F̄ = I and its gradient Ḡ = 0, of
the RVE. The homogenized tangent operators are computed using a condensation procedure from the microscopic
stiffness matrix as presented in [27].

Figures 9a and 9b show the convergence of some components of the homogenized tangent operators in terms
of the number of interpolant degrees of freedom in the cases of the Lagrange and of the cubic spline interpolation
formulations. The convergence of L0000 and L1111 of the first–order tangent L̄ = ∂P̄/∂F̄ is plotted in Fig. 9a. The
convergence of J000000, J111111, J001001 and J101101 of the second–order tangent J̄ = ∂Q̄/∂Ḡ is plotted in Fig. 9b. A
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larger interpolation order (Lagrange polynomial order or number of segments of the cubic spline) corresponds to a
lower constraint on the system, and leads to the upper–bound convergence. For this RVE, a polynomial order larger
than 9 (6+4×(9-1) = 38 dofs in 2D) or a number of segments larger than 2×5 along the two directions (6 + 4×5+4×2=

34 dofs) provides a converged estimation which is better than the results evaluated by the linear displacement boundary
condition. This case corresponds to the polynomial order 1 and is given as the first points of the Lagrange interpolation
curves, see Figs. 9a and 9b.
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Figure 9. Convergence of the elastic homogenized properties in terms of the number of interpolant degrees of freedom added to the system: (a)
convergence of some first–order tangent components and (b) convergence of some second–order tangent components. The first–order tangent is

defined by L̄i jkl =
∂P̄i j
∂F̄kl

and the second–order tangent is defined by J̄i jkpqr =
∂Q̄i jk
∂Ḡpqr

.

This section considers an hexagonal honeycomb but this methodology can be easily derived to other kinds of
structures. For 3-dimensional cellular structures, an arbitrary 3–dimensional interpolation method can be used, for
example the patch Coons interpolation [42] and its implementation is directly extended from the 2–dimensional case.

5.2.2. Stability analysis of the microscopic problem
In this section, prescribed macroscopic strains are used to enforce a vertical compression. The prescribed macro-

scopic deformation gradient reads

F̄ =

1 0 0
0 0.98 0
0 0 1

 , (86)

and its gradient Ḡ = 0. This macroscopic strain state is parametrized by a unique control parameter µ ∈ [0 1] with

F̄µ = I + µ
(
F̄ − I

)
and (87)

Ḡµ = µḠ = 0 . (88)

To constrain the PBC, the Lagrange interpolation of degree 9 for both horizontal and vertical directions is used as
justified in Fig. 9. Beside using the elasto–plastic material law presented in Section 5.1, an elastic material law is
also considered for comparison purpose. Because of the presence of non–linearities, an iterative Newton–Raphson
solver is used at each increment of the control parameter. The homogenized stresses and homogenized tangents are
estimated at each control step.

Figure 10 illustrates the homogenized Piola–Kirchhoff stress norm given by ||P̄|| =
√

P̄ : P̄, with respect to the
control parameter for both the elastic and the elasto–plastic cases. For the elastic case, the tangent values always
remain positive but become close to 0 with the occurrence of microscopic buckling, as depicted in Fig. 11a. For
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Figure 11. Comparison of the homogenized properties for the elastic and elasto–plastic problems: (a) first–order tangent components and (b)
second–order tangent components.

the elasto–plastic case, the structure degradation is observed. The secondary path has a negative tangent. These
negative tangent values are detailed in Fig. 11b. With a classical continuum, the presence of this softening part in
the elasto–plastic case might lead to the appearance of a mesh–dependent localization. In the second–order multi–
scale model used, the Mindlin strain gradient continuum is used at the macroscopic scale so that the macroscopic
localization is expected to be captured under the form of bands independent of the mesh size by accounting for the
positive second–order tangents, see Fig. 11b.

Finally, Figs. 12a and 12b show the buckling shape for both the elastic and the elasto–plastic cases at the last
control step which corresponds to the prescribed macroscopic strains.

5.3. Multi–scale compression of a honeycomb structure

This section demonstrates the ability of the second–order DG–based multi–scale computational homogenization
technique presented in Section 2 to study the behavior of structures made of cellular materials, for which the bucking
occurs at the micro–scale leading to a macroscopic deformation localization. For this purpose we consider a uni–axial
compression test of the hexagonal honeycomb structure presented in Section 5.1. The effects of the macro–mesh
discretization, of the RVE size, and of the imperfection parameter δ are successively studied.
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(a) (b)

Figure 12. Buckling of the cell walls due to the vertical compression: (a) elastic buckling and (b) elasto–plastic buckling. The deformed shapes are
presented.

H

L

Δ l

(a) (b)

Figure 13. Uni–axial compression test: (a) macroscopic boundary condition for the uni–axial compression test and (b) repeated unit (RU).

Let us consider a structure of width L = 65.8 mm and of height H = 101 mm which is made of the hexagonal
honeycomb presented in section 5.1, see Fig. 13, and constrained with the macroscopic boundary condition illustrated
in Fig. 13a. The prescribed vertical displacement ∆ is applied to the top boundary while the bottom is constrained
vertically. The left and right boundaries are free to move. The horizontal displacement of a point on the left boundary
is also fixed in order to prevent the rigid body motion. In order to trigger the macroscopic localization, a small
random perturbation with δ = 1% is introduced at the micro–scale, see Appendix C for details on adding the structure
imperfection.

5.3.1. Study of the macro–mesh effect
First a direct simulation is carried out in which the whole structure made of discrete cell walls is meshed. The finite

element mesh comprises 160820 quadratic 6–node triangles with 396258 nodes. The problem is solved by a standard
arc–length path following technique as presented in Section 4. The results of this direct modeling are considered as a
reference solution.

The multi–scale analyzes are performed by using the proposed DG–based second–order multi–scale computational
homogenization scheme presented in Section 2. To evaluate the absence or not of the macroscopic mesh size effect,
three finite element meshes of quadratic 9–node quadrangles are used, as shown in Fig. 14. These meshes are
respectively noted as (i) mesh 0, (ii) mesh 1 and (iii) mesh 2. A series of 500 repeated units (RUs) with a random
perturbation δ = 1% is chosen to construct the mesh library of the RVEs. This choice is motivated by the fact that
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(a) mesh 0 - 16 elements (b) mesh 1 - 32 elements (c) mesh 2 - 48 elements

Figure 14. Macroscopic meshes used in the simulations. Some elements are noted in order to follow the deformation of the micro–structure during
loading.

Method CPU time per iteration Used memory
Full model 92 seconds 5.6 gigabytes

Multi–scale model, mesh 0 36 seconds 1.3 gigabytes
Multi–scale model, mesh 1 84 seconds 2.6 gigabytes
Multi–scale model, mesh 2 146 seconds 4.0 gigabytes

Table 1. Computation time and used memory of the full model and multi–scale models. These computations were performed in the same machine
with one processor.

a single unit contains all the statistical information of the micro–structure (for low imperfection). The cell walls
are meshed with quadratic 6–node triangles, see Fig. 13b. The presence of imperfections in each RVE leads to
non–conformal meshes that motivates the use of the polynomial interpolation method. The Lagrange interpolation is
adopted here with a degree of 4 in the horizontal direction and of 9 in the vertical direction. Note that in the multi–
scale computational method, the underlying macroscopic and microscopic meshes are independent since the scale
transition is only guaranteed through microscopic volume integrals.
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Figure 15. Vertical reaction force vs. relative displacement curves obtained with the second–order multi–scale scheme. The solution from the direct
numerical simulation is also reported.

Figure 15 shows the vertical macroscopic reaction force curves in terms of the relative displacement obtained
for the three meshes of the macroscopic structure and for the reference solution obtained with the direct numerical
simulation. A good agreement between the multi–scale and the reference results is observed. Because of the second–
order scheme, the results are quasi–independent of the mesh size despite the localization band. Before the localization
onset stated by the maximal force in the force–displacement curves, this multi–scale approach over–estimates slightly
the results compared to the reference solution. After this point, it slightly under–estimates the curves. This point
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can be explained by the fact that the occurrence of the microscopic buckling leads to strong fluctuations in the field
over the microscopic structure, and that the quadratic distribution of the macroscopic displacement field (linear in
deformation) is only an approximation that cannot capture this high order effect.
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Figure 16. Deformation shape obtained with the direct simulation (a) and distributions of the equivalent Green–Lagrange strain obtained with
the multi–scale simulations for (b) the mesh 0, (c) the mesh 1 and (d) the mesh 2. The equivalent Green–Lagrange strain is given by ēGL =√

2
3 dev(Ē) : dev(Ē), where dev(•) is the deviatoric operator and where Ē = 1

2

(
F̄T F̄ − I

)
.

Figure 16a shows the deformed shape predicted with the direct simulation of the full–model problem and Figs.
16b, c, d, show the distribution of the equivalent Green–Lagrange strain obtained with the multi–scale simulations
and the different meshes. Clearly, as for the force–displacement curves, the macroscopic strain distribution patterns
in Figs. 16b, 16c and 16d are weakly dependent on the mesh size. The deformation pattern of the direct simulation is
captured by the multi–scale simulations and one can conclude that the second–order scheme provides an acceptable
solution with a lower number of degrees of freedom.
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Figure 17. Equivalent plastic strain distributions and plastic hinges at different locations of the macro–mesh.

Figure 17 illustrates the final distribution of the equivalent plastic strain obtained for micro–structural problems at
different Gauss points of the macro–scale mesh 1. The locations of the Gauss points are identified on Fig. 14b. As
expected, the microscopic structure deforms more inside the localization band (elements 31 and 58 at Gauss point 0)
and less outside (element 36 at Gauss point 0). Figure 18 depicts the evolution of the homogenized stress component
P̄11 in terms of the vertical deformation 1 − F̄11 at different Gauss points of the mesh 1. The strain softening stages
are clearly observed at the different locations. Finally the evolutions of the homogenized second–order stress norm at
different Gauss points of the macro–scale mesh 1, in terms of the macroscopic compression displacement, are reported
in Fig. 19. Clearly the second–order stress becomes more important after the onset of localization.

The comparison of the computational resources required to conduct the full direct numerical simulation and the
different multi–scale simulations are reported in Tab. 1. For this comparison, all the simulations were conducted
on a single processor. Despite the simplicity of the problem, the full direct numerical simulation requires more
than 5 gigabytes of memory due to the size of the stiffness matrix to be solved. The multi-scale approach always
requires less memory. When considering the multi–scale approach, the mesh 0 and mesh 1, see Fig. 14, require a
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Figure 18. Homogenized stress P̄11 vs. vertical deformation 1 − F̄11 at different Gauss points of the mesh 1.
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Figure 19. Homogenized second–order stress norm
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Q̄i jkQ̄i jk vs. the prescribed displacement ∆ at different Gauss points of the mesh 1.

lower computational (CPU) time than the direct numerical resolution. The resolution of the finest macroscopic mesh,
mesh 2, is slower due to the higher number of microscopic problems. Note that in general, if the dimensions of
the macroscopic problem increase with respect to the size of the micro–structure, here the honeycomb structure, the
computational time and the used memory of the full model largely increase. As the resolution of large systems is
still a challenge with actual modern computers, the use of multi–scale models becomes much more efficient than the
direct numerical simulations as it will be the case for the next example. Moreover, for the multi–scale approach the
computational resources depend more on the number of microscopic problems to be solved than on the size of the
stiffness matrix of the macroscopic problem. Thus for parallel simulations, the multi–scale problem can be partitioned
more efficiently as the computational requirement does not result from a single matrix storage and resolution but from
the number of different microscopic problems to be solved.

5.3.2. Study of the RVE size effect
With a second–order computational homogenization scheme, the size of the RVEs directly relates to the charac-

teristic length scale of the Mindlin strain gradient continuum as stated in [49]: a larger size of the RVE leads to a
larger characteristic length. In order to analyze the influence of the RVE size on the multi–scale results, five different
RVEs are successively considered –1x1–RU, 2x2–RU, 2x1–RU, 1x2–RU, and 3x3–RU– for the multi–scale analysis
using the macroscopic mesh 1 presented in Fig. 14b. Note that the size of a RU refers to the micro–structure, without
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Figure 20. Vertical reaction force vs. relative compression displacement obtained by the second–order homogenization scheme for different RVE
sizes. The solution from the direct simulation is also shown.
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perturbation, of width l
√

3 and of height 3l ,in which l is the length of the honeycomb edge.
The reaction forces in terms of the relative compression displacement obtained for the five simulations are reported

in Fig. 20 and are compared with the reference solution obtained by the direct numerical simulation. During the
elastic response the solution does not depend on the RVE size as the strain is uniform (there is thus no length scale
effect). When the micro-buckling appears, the existence of a strain gradient leads to a size effect and it can be
seen on Fig. 20b that, with the multi-scale scheme, the predicted strain softening onset increases slightly with the
size of the RVE as expected (the increase of the strain softening onset is about 3% for an increase of the RVE size
from 1x1 to 3x3). The strain softening onset predicted with the 1x1–RU is the closest to the one predicted with
the direct numerical simulation. During the strain softening response the localization band induces a higher strain
gradient in the structure and the RVE size modifies the slope of the response. This was also expected as under a
strain gradient the response depends on the characteristic length. This behavior was studied in the non-local damage
model litterature, e.g. [50], in which a material length scale is defined to capture the localization bands and the strain
softening response due to damage. In our context of a second–order computational homogenization, the material
length scale is directly related to the size of the RVE [49] and the localization band results from the micro–bucklings,
but the behavior is similar. Figure 20b illustrates that compared to the direct numerical simulation results, the force is
slightly overestimated during the softening response for the larger RVE sizes (within 5%). Finally the distributions of
the equivalent Lagrange strain obtained with 1x1–RU, 2x2–RU, and 3x3–RU RVEs are shown in Fig. 21. The width
of the localization pattern is slightly increased when the RVE size becomes larger, which is in agreement with the
reduction of the strain softening effect observed in Fig. 20b.
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From this analysis, it appears that the selection of the RVE as a single RU seems more appropriate on the accuracy
point of view, but also because the computation cost is much lower. We will now assess this selection by considering
the compression of honeycomb plates of different dimensions, so with different characteristic length vs. macro–size
ratios. Indeed, it was shown in the literature that the cell size in cellular materials acts as a characteristic material
length scale and that the behavior of macroscopic structures can exhibit a size effect, see e.g. [2]. This size effect
in cellular materials can be captured using the generalized continuum, see e.g. [51]. In our approach, the size effect
during the localization is expected to be captured using the second–order multi–scale computational homogenization
framework in which the Mindlin strain gradient is considered at the macroscopic scale (the Mindlin strain gradient
formulation has been used to account for the size effects for both elasticity, see e.g. in [52], and elasto–plasticity, see
e.g. [53]).
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Figure 22. Vertical reaction force vs. relative compression displacement obtained by the second–order homogenization scheme for different plate.
The solution from the direct simulation is also shown.

By increasing proportionally the width and height of the honeycomb plate while keeping constant the honeycomb
cell size allows studying the influence of the ratio between the plate dimensions and the cell size. Three different ratios,
H/l = 51, H/l = 75 and H/l = 102 are successively considered with the multi–scale analysis using the macroscopic
mesh 1 presented in Fig. 14b and with the 1x1–RU RVE. The structural responses are compared with direct numerical
simulations in Fig. 22. Although small, the size effect is observed in the strain softening onset prediction and in the
strain softening regime. The same trend is observed for the direct and multiscale simulations: the strain softening
onset happens later for smaller macroscopic sizes. The multi–scale predictions lie within 1% of the direct numerical
results.

This study justifies the use of a 1x1–RU RVE to capture correctly the strain softening onset and the softening
response while keeping a reduced computational cost.

5.3.3. Study of the imperfection degree effect
From the above examples, we can conclude that the second–order computational homogenization technique can

be used for cellular materials. The size of the RVEs within this scheme is limited by the fact that the use of larger sizes
of the RVEs leads to larger length scales of the macroscopic Mindlin strain gradient continuum [49] and leads to over–
estimate the results. Using a small RVE size is acceptable for honeycomb materials as a single repeated unit remains
representative. For random micro–structures, choosing a small RVE size potentially leads to large variations of the
homogenized properties. A compromise should thus be made. As an illustration results obtained with different levels
of imperfection ranging from a quasi-perfect micro–structure –for which a single repeated unit is representative–
to a 30 % imperfect micro–structure –for which this is no longer the case– are reported in Fig. 23. These results
are obtained by using the macroscopic mesh 1, see Fig. 14, and a single repeated unit at the microscopic level. A
larger value of the perturbation δ leads to a softer result on the macroscopic force–displacement behavior, which is
not necessarilly physical. Thus this approach cannot be used for structures with high degrees of imperfection, but is
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Figure 23. Effect of the imperfection level δ. The results are obtained with the mesh 1 and 1x1–RU RVEs.

shown to predict with accuracy the behavior of structure made of regular micro–patterns for which a single RU can
be considered as a RVE.

5.4. Multi–scale compression of a rectangular plate with a central hole

In this section, the proposed DG–based second–order multi–scale computational homogenization approach is
applied to consider the behavior of a rectangular plate with a central hole made of the elasto–plastic honeycomb
structure presented in section 5.1. The micro–structure is characterized by a cell wall length l = 1 mm, a cell wall
thickness t = 0.1mm and a perturbation parameter δ = 1% in order to initiate the microscopic buckling patterns.

At the macroscopic scale, the homogeneous model of the plate is considered. The radius of the central hole
is denoted by r = 15 mm. The height and width of this plate are H = 180 mm and L = 90 mm respectively. The
macroscopic geometry and the macroscopic boundary conditions are illustrated in Fig. 24a. The macroscopic problem
is discretized by quadratic 6–node triangles and quadratic 9-node quadrangles as shown in Fig. 24b. The full model
is also considered with 297739 quadratic 6–node triangles with 732082 nodes in order to compare to the multi-scale
model.

For the microscopic analyzes, as justified in the previous application, the 1x1–RU of width 1.73 mm and height 3
mm can be used as a RVE. In order to account for the imperfection, a library of 500 random RVEs with an imperfection
δ = 1% is generated. The cell walls are meshed with quadratic 6–node triangles, see Fig. 13b. The Lagrange
interpolation is adopted here with the degrees of 4 in the horizontal direction and of 9 in the vertical direction.

Fig. 25a shows the vertical reaction force curves in terms of the relative macroscopic compression displacement
∆
H given by the full and multi-scale models. Comparable results are observed. Figure 26a shows the deformed shape
given by the full model and Fig. 26b shows the distribution of the Green–Lagrange strain obtained by the multi-scale
simulation. It can be concluded that the second–order scheme provides an acceptable solution with a lower number
of degrees of freedom.

For this problem the direct simulation requires a lot of resources (up to 30 GB memory) while the multi-scale
computation is more efficient by the fact that a much smaller number of elements at the macro-scale problem are
required and by the fact that the resolutions at the microscopic problems can be easily parallelized because they are
totally independent.

6. Conclusions and perspectives

This work presents a general second–order multi–scale computational homogenization framework for cellular
materials. Micro–buckling and macroscopic localization can occur and influence each other.

As the classical multi–scale computational homogenization schemes lose the solution uniqueness and face the
strain localization problem when bucking occurs at the micro–scale, the second–order scheme incorporating the
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Figure 24. Geometry and boundary condition used at the macro–scale (a) and the macro–mesh (b).

Mindlin strain gradient continuum is used at the macro–scale to capture the strain localization. The Mindlin contin-
uum is solved using the discontinuous Galerkin method. At the micro–scale, as non–conformal meshes are generally
obtained, the periodic boundary condition is enforced by using the polynomial interpolation method adapted for cells
exhibiting important voids on the boundary. As the presences of instabilities are considered at both scales, the standard
arc–length path following technique is adapted to a multi–scale computation.

This multi–scale model was used to study the uni–axial compression test of a specimen made of a hexagonal
honeycomb with small imperfections. The micro–buckling has been considered and results were validated with direct
numerical simulations of the structure demonstrating the ability of the method to capture the localization bands.

It was also found that on the one hand the size of the RVE for second–order scheme is bounded to avoid over-
predictions and that on the other hand smaller RVE sizes are not always representative for structures with large
imperfections, leading to softer predictions which are not physical. Thus this approach cannot be used for structures
with high degrees of imperfection, but has been shown to predict with accuracy the behavior of structure made of
regular micro–patterns for which a single repeated unit can be considered as a RVE. For higher imperfections, a
sharper localization band can appear and only continuous–discontinuous multi–scale framework can be used.

Finally we have shown with the plate with a hole study that the method can be used to model larger problem made
of cellular materials.

Appendix A. J2-hyperelastic–based elasto–plastic material model

Under large deformations the material model is based on the choice of a strain measure and on the definition of
an elastic potential of the work-conjugate stress. The first Piola-Kirchhoff stress tensor P is considered and its work
conjugate–strain measure is the deformation gradient F, with J = det(F) > 0 its Jacobian. For elasto–plastic materials,
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Figure 25. Reaction force vs. prescribed vertical displacement for the compression test of the rectangular plate with a central hole
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Figure 26. Deformation shape obtained with the direct simulation (a) and distributions of the equivalent GreenLagrange strain obtained with the
multi–scale simulation (b) at the final time.

a multiplicative decomposition of the deformation gradient is assumed

F = FeFp , (A.1)

where Fe and Fp are the elastic and plastic parts of the deformation gradient, respectively. The material model is based
on a hyperelastic formulation, with an elastic potential defined as

Ψ(Ce) =
K
2

ln2J +
G
4

[lnCe]dev : [lnCe]dev , (A.2)

where K = E
3(1−2ν) and G = E

2(1+ν) are the bulk and shear moduli of the material, and where [lnCe]dev is the deviatoric
part of lnCCCe. Note that the defined elastic potential can only explicitly depends on the elastic deformation through the
elastic right Cauchy strain tensor Ce = FeTFe. Then, the first Piola-Kirchhoff stress tensor, given by P = 2F ∂Ψ

∂C , can
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be derived as1

P = 2F
[
Fp−1 ∂Ψ(Ce)

∂Ce Fp−T
]

= KF-TlnJ + Fe
[
2GCe−1

· (ln
√

Ce)dev
]

Fp-T . (A.3)

In order to obtain the elastic and plastic parts of the deformation gradient in Equation (A.1), the J2-flow theory,
expressed in terms of the Kirchhoff stress, is used in this work. To this end, the Kirchhoff stress τ = PFT needs to be
calculated, via

τ = p′I + Fe
[
2GCe−1

· (ln
√

Ce)dev
]

FeT , (A.4)

where p′ = (KlnJ) is the pressure, and where the second term on the right hand side of Equation (A.4) is the deviatoric

part of the Kirchhoff stress, τdev, which yields the equivalent von Mises stress τeq =

√
3
2τ

dev : τdev. According to the
J2–elasto–plasticity theory, the von Mises stress criterion reads

f = τeq − R(p) − σ0
y 6 0 , (A.5)

where f is the yield surface, σ0
y is the initial yield stress, R(p) > 0 is the isotropic hardening stress, and where p

is an internal variable characterizing the irreversible behavior, as the equivalent plastic strain in small deformation.
Equation (A.5) is completed by the normal plastic flow, which gives the increment of the plastic deformation gradient
during the time step between the configurations “n” and “n + 1”, and reads{

Fp
n+1 = exp(4pNp) · Fp

n ,

Np =
∂ f
∂σ = 3

2
τdev

τeq .
(A.6)

Practically, the normal of the yield surface Np is calculated from the elastic predictor. By derivation of this material
model, one can also compute

L =
∂P
∂F

, and (A.7)

Fp =
∂Fp

∂F
. (A.8)

These close form expressions and more details can be found in the framework proposed by [54].
The resolution of the system of Eqs. (A.1-A.6) follows the predictor-corrector scheme during the time interval

[tn tn+1] described by [54], and which can be summarized as follows

1. Predictor step. The plastic deformation gradient tensor is initialized to the value at the previous step Fppr = Fp
n

leading to the right Cauchy elastic predictor Cepr = Fppr−T FT
n+1Fn+1Fppr−1. As the plastic flow is independent

from the rotation tensor, the plastic correction can be computed in an unrotated configuration and, using Eq.
(A.4), the elastic predictor reads

(
τpr)dev

= 2G
(
ln
√

Cepr
)dev

, (A.9)

and the plastic flow direction (A.6) is readily deduced as being

Np =

√
3
2

(
ln
√

Cepr
)dev√(

ln
√

Cepr
)dev

:
(
ln
√

Cepr
)dev

. (A.10)

1Using ∂lnCe:lnCe

∂Ce = 2Ce−1 · lnCe = 2lnCe · Ce−1 = 2Ue−1 · lnCe · Ue−1, where Ue is the symmetric part of Fe and tr
(
ln

(√
Ce

))
= ln (J).
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2. Correction step. If the von Mises criterion (A.5) is not satisfied using this predictor, i.e. f =
(
(τpr)dev

)eq
−

R(pn)−σY > 0, one iteratively computes the accumulated plastic strain increment ∆p such that the corrotational
Kirchhoff tensor satisfies the von Mises criterion:

Fe = F
(
Fppr)−1

·
(
exp(4pNp)

)−1 (A.11)(
ln
√

Ce
)dev

=
(
ln
√

Cepr
)dev
− ∆pNp , (A.12)(

τcor)dev
= 2G

(
ln
√

Ce
)dev

, (A.13)

f =
((
τcor)dev

)eq
− R(pn + ∆p) − σY = 0 . (A.14)

Note that Eq. (A.12) results from Eq. (A.6), from Eq. (A.11), and from the following properties

Ce =
(
exp(4pNp)

)−T
· Cepr

·
(
exp(4pNp)

)−1 ,

log
((

Ce)dev
)

= log
((

Cepr)dev)
− 2∆pNp , (A.15)

where we have used the permutativity properties of Np and
(
Cepr)dev.

3. Final state. The elastic and plastic deformation gradient are respectively obtained from Eqs. (A.11) and (A.6),
and the effective Piola-Kirchhoff stress tensor from Eq. (A.3).

Appendix B. Parallel implementation

In this section, the finite element implementation of the path–following method in the context of the DG–based
second–order computational homogenization is presented.

Figure B.27. Interface element ∂Ωe
0 between two adjacent quadratic triangles Ωe+

0 and Ωe−
0 .

At the macroscopic scale, for the Mindlin strain gradient problem, the interpolation polynomial order is at least
of the second order. Thus at least quadratic elements are used with a usual Gauss under–integration. At each element
boundary, an interface element is inserted, see Fig. B.27, and is defined from the degrees of freedom of two adjacent
elements Ωe+

0 and Ωe−
0 . The Gauss points of this interface element are duplicated with a positive and a negative Gauss

points at each position so that they respectively belong to the positive and negative elements in order to evaluate the
jump and mean values of the interface terms (16, 17). At each Gauss point of both the bulk and interface elements, a
separate microscopic BVP is attached. Because of the introduction of some randomness in the micro–structure, each
macroscopic material point is associated with a local RVE which differs from the other RVEs attached to the other
macroscopic positions. In order to take into account this randomness, a library of RVE meshes with a certain number
of examples is generated. Each microscopic BVP located at a macroscopic position takes a random RVE mesh from
the mesh library. However at each Gauss point of an interface element, the positive and negative Gauss points located
at the same position take the same RVE geometry.

The computation is performed in parallel. At the macroscopic scale, the mesh is partitioned on several processors,
see Fig. B.28. The macroscopic problem is thus solved by using face–based ghost elements. The ghost elements al-
lows to compute the interface terms at the boundaries of each processor and thus to ensure the compatibility between
the partitions. This efficient methodology is possible because of the discontinuous Galerkin framework, see [37, 38]
for details. At the microscopic scale, each microscopic BVP is solved in serial, but as a large number of microscopic
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Figure B.28. Parallelization of the macroscopic problem: (a) initial mesh with the partition numbers and (b) partitioned mesh with the associated
ghost elements plotted in dotted line.

BVPs are considered for each macro–scale processor, the microscopic BVPs of a macro–scale partition are distributed
to different processors, see Fig. B.29. This parallelization on a double level is summarized as follows. The macro-
scopic BVP is distributed on n “macro–processors”. For each “macro–processor”, the underlying microscopic BVPs
are distributed on p “micro–processors”. Each “micro–processor” contains j microscopic BVPs. With this strategy,
any number of processors can be used, see Fig. B.29.

The “initialization block” of the multi–scale scheme in Fig. 5 thus contains the following steps:

1. Initialize the macroscopic BVP:

• Load the macroscopic mesh.

• Distribute the macroscopic BVP to the macro–processors, see Fig. B.29.

• Create all the macroscopic Gauss points.

2. Load the RVE meshes from the micro–mesh library:

• Attach a microscopic BVP at each macroscopic Gauss point. Each microscopic BVP located on a macro-
scopic position takes a random RVE mesh from the micro–mesh library.

• However at each Gauss point of an interface element, the positive and negative Gauss points located at the
same position take the same RVE geometry.

3. Distribute the microscopic BVPs belonging to one “macro–processor” to several “micro–processors”, see Fig.
B.29.

4. Initiate every microscopic BVP as follows:

• Assign the material laws to the microscopic constituents.

• Compute the constraint matrix C in (46) and the projection matrices R and Q.

• Compute the initial tangent operators L̄0,L̄0
J , J̄0

L and J̄0 required for the interface terms of the DG formu-
lation, see [27] for details.

• Send the values of these elastic tangent operators to the macroscopic BVP.

5. Compute the macroscopic load vector following Eq. (22).

This framework has been implemented in the parallel code Gmsh [55].
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Figure B.29. Parallel multi–scale computation. The macroscopic problem is parallelized on n “macro–processors” and solved using face–based
ghost elements. The microscopic BVPs at each macro–processor are distributed on p “micro–processors” and naturally distinct problems. Each
“micro–processor” contains j micro BVPs.

Appendix C. Random perturbation of an hexagonal honeycomb

We use the Voronoı̈ tessellation technique to generate the regular and perturbed hexagons. From the regular set of
points which generate the regular hexagons with edge length l, the perturbed set of points are created by modifying
the point coordinates, see Fig. Appendix C, such that

xi = xi + δd cos(φ) and
yi = yi + δd sin(φ), (C.1)

where d is a random value in [0 l], where φ is a random value in [0 2π] and where δ is the control parameter which
allows controlling the perturbation level of the micro–structure. The same thickness t is used for all the cell walls in
order to generate the complete structure.

(x i , y i)

x i=x i+δ d cos (φ)

y i= y i+δd sin (φ)
d

φ

(a) (b) (c)

Figure C.30. Voronoı̈ diagram of the hexagonal honeycomb: (a) regular control points, (b) generated regular hexagons and (c) coordinate perturba-
tion at each control point i. The coordinate perturbation is controlled by φ, which is a random angle in [0 2π], by d which is the random distance
in [0 l] where l is edge length of regular hexagon and by δ which is the control parameter defining the perturbation intensity.
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