Increased electron donor and electron acceptor characters enhance the adhesion between oil droplets and cells of Yarrowia lipolytica as evaluated by a new cytometric assay
Aguedo, Mario; Waché, Y.; Mazoyer, V.et al.
2003 • In Journal of Agricultural and Food Chemistry, 51 (10), p. 3007-3011
[en] The adhesion of methyl ricinoleate droplets to cells of the yeast Yarrowia lipolytica was investigated. A new cytometric method, relying on the double staining of fatty globules with Nile Red and of cells with Calcofluor, enabled us to quantify methyl ricinoleate droplet adhesion to cells precultured on a hydrophilic or on a hydrophobic carbon source. In this last case, droplet adsorption was enhanced and a MATS (microbial adhesion to solvents) test revealed that this increase was due to Lewis acid-base interactions and not to an increase in the hydrophobic properties of the cell surface. These preliminary results demonstrate that the developed cytometric method is promising for various applications concerning the study of interactions between microorganisms and an emulsified hydrophobic substrates.
Disciplines :
Biotechnology
Author, co-author :
Aguedo, Mario ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Waché, Y.; Laboratoire de Microbiologie, UMR UB/INRA 1082, ENSBANA, 21 000 Dijon, France
Mazoyer, V.; Laboratoire de Microbiologie, UMR UB/INRA 1082, ENSBANA, 21 000 Dijon, France
Sequeira-Le Grand, A.; Centre de Cytometrie en Flux, Université de Bourgogne, 21 000 Dijon, France
Belin, J.-M.; Laboratoire de Microbiologie, UMR UB/INRA 1082, ENSBANA, 21 000 Dijon, France
Language :
English
Title :
Increased electron donor and electron acceptor characters enhance the adhesion between oil droplets and cells of Yarrowia lipolytica as evaluated by a new cytometric assay
Publication date :
2003
Journal title :
Journal of Agricultural and Food Chemistry
ISSN :
0021-8561
eISSN :
1520-5118
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Suzzi, G.; Lanorte, M. T.; Galgano, F.; Andrighetto, C.; Lombardi, A.; Lanciotti, R.; Guerzoni, M. E. Proteolytic, lipolytic and molecular characterisation of Yarrowia lipolytica isolated from cheese. Int. J. Food Microbiol. 2001, 69, 69-77.
Barth, G.; Gaillardin, C. The dimorphic fungus Yarrowia lipolytica. In Nonconventional Yeasts in Biotechnology; Wolf, K., Ed.; Springer-Verlag: Berlin, Germany, 1996; pp 313-388.
Waché, Y.; Bergmark, K.; Courthaudon, J.-L.; Aguedo, M.; Nicaud, J.-M.; Belin, J.-M. Medium-size droplets of methyl ricinoleate are reduced by cell-surface activity in the γ-deca-lactone production by Yarrowia lipolytica. Lett. Appl. Microbiol. 2000, 30, 183-187.
Margesin, R.; Schinner, F. Effect of temperature on oil degradation by a psychotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 1997, 24, 243 -249.
Scioli, C.; Vollaro, L. The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Res. 1997, 31, 2520-2524.
Bouchez-Naïtali, M.; Rakatozafy, H.; Marchal, R.; Leveau, J. Y.; Vandecasteele, J. P. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J. Appl. Microbiol. 1999, 86, 421-428.
Bouchez-Naïtali, M.; Blanchet, D.; Bardin, V.; Vandecasteele, J. P. Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 2001, 147, 2537-2543.
Rosenberg, M. Basic and applied aspects of microbial adhesion at the hydrocarbon: water interface. Crit. Rev. Microbiol. 1991, 18, 159-173.
Bellon-Fontaine, M.-N.; Rault, J.; Van Oss, C. J. Microbial adhesion to solvents: a novel method to determine the electron-donor/electro-acceptor or Lewis acid-base properties of microbial cell. Colloids Surf. B 1996, 7, 47-53.
van der Mei, H. C.; van de Belt-Gritter, B.; Busscher, H. J. Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 2. Adhesion mechanisms. Colloids Surf. B 1995, 5, 117-126.
Hazen, B. W.; Hazen, K. C. Modification and application of a simple, surface hydrophobicity detection method to immune cells. J. Immunol. Methods 1988, 107, 157-163.
Veal, D. A.; Deere, D.; Ferrari, B.; Piper, J.; Attfield, P. V. Fluorescence staining and flow cytometry for monitoring microbial cells. J. Immunol. Methods 2000, 243, 191-210.
Tanaka, A.; Fukui, S. Metabolism of n-alkanes. In The Yeasts; Rose, A. H., Harrison, J. S., Eds.; Academic Press: London, U.K., 1989; Vol. 3, pp 261-287.
Osumi, M.; Fukuzumi, F.; Yamada, N.; Nagatani, T.; Teranishi, Y.; Tanaka, A.; Fukui, S. Surface structure of some Candida yeast cells grown on n-alkanes. J. Ferment. Technol. 1975, 53, 244-248.
Meisel, M. N.; Medvedeva, G. A.; Kozlova, T. M. Cytological mechanisms of the assimilation of n-alkanes by yeast. Mikrobiologiya 1976, 45, 844-851.
Meisel, M. N.; Kozlova, T. M.; Medvedeva, G. A.; Novichkova, A. T.; Pomoshchnikova, N. A.; Seliverstova, L. A. Yeast peroxisomes, their development and functioning. Mikrobiologiya 1977, 46, 835-845.
Käppeli, O.; Fiechter, A. Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J. Bacteriol. 1977, 131, 917-921.
Waché, Y.; Aguedo, M.; Choquet, A.; Gatfield, I.; Nicaud, J.-M.; Belin, J.-M. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 2001, 67, 5700-5704.
Bakhuis, E.; Bos, P. Correlation between growth of Candida lipolytica and size of droplets in the hydrocarbon containing medium. Antonie van Leeuwenhoek 1969, 35, F47.
Cirigliano, M. C.; Carman, G. M. Isolation of a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1984, 48, 747-750.
Cirigliano, M. C.; Carman, G. M. Purification and characterization of Liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1985, 50, 846-850.