Abstract :
[en] Generally, an antibiotic is thought to have a role in antagonism simply because the producing strain is known to exhibit a potential for pathogen growth inhibition. Some genetic approaches such as PCR using specific primers or genome mining using known sequence data of close relatives are also used. Nevertheless, none of these methods allows stating for a link between a specific compound and the observed antagonism.
Yet MALDI Mass Spectrometry Imaging (MSI) is a powerful tool to decipher the chemical messengers exchanged by two protagonists [1,2,3;]. Tandem mass spectrometry (MS/MS) may be also used, either on extracts [2,3] or directly on the microbial colonies [4].
The presentation will thus be focused on two examples of application of MALDI MSI combined to in situ tandem mass spectrometry.
The first presented case will be the antagonism between soilborne strain Paenibacillus polymyxa Pp56 and the fungal phytopathogen Fusarium oxysporum. Using MALDI MSI, we were able to precisely localize each detected antibiotic, allowing discriminating which LI-F lipopeptides (fusaricidin) were really active against the pathogen progression. Besides, the use of in situ MS/MS allowed us to sequence the peptide moiety of several LI-F lipopeptides, showing that some of them are actually a mixture of several forms.
The second example concerns the metabolites that are released by Bacillus amyloliquefaciens S499 cells following their inoculation on 7 days old tomato roots. We developed specific bioassays for time-course monitoring by MALDI MSI. First analyses revealed an efficient secretion of surfactin by Bacillus cells after 3 days when colonization as biofilm-structured populations is well established. Even if the composition of antibiotic mixture does not greatly evolve over time, after long incubation periods (32 or 35 days post inoculation), new series of compounds are detected in the tomato root -surrounding medium. Structural analysis based on exact mass measurements and MS/MS experiments, performed directly on the semi-solid agar medium, allowed us to identify these compounds as new variants of surfactins.
[1] Barger, S., et al., Anton Leeuw Int J G, 2012, 102, 435-445.
[2] Hoefler, B. C., et al,. Natl Acad Sci USA, 2012, 109, 13082-13087.
[3] Moree, W. J., et al., Natl Acad Sci USA, 2012, 109, 13811-13816.
[4] Debois, D., et al., J Am Soc Mass Spectrom. 2013, 24, 1202-1213