Paper published in a book (Scientific congresses and symposiums)
A stochastic framework for subspace identification of a strongly nonlinear aerospace structure
Noël, Jean-Philippe; Schoukens, Johan; Kerschen, Gaëtan
2014In Proceedings of the International Modal Analysis Conference (IMAC) XXXII
 

Files


Full Text
202_noe.pdf
Author preprint (974.42 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
System identification; maximum likelihood; subspace method; aerospace structure; nonsmooth nonlinearities
Abstract :
[en] The present study exploits the maximum likelihood identification framework for deriving statistically-optimal models of nonlinear mechanical systems. The identification problem is formulated in the frequency domain, and model parameters are calculated by minimising a weighted least-squares cost function. Initial values of the model parameters are obtained by means of a nonlinear subspace algorithm. The complete identification methodology is first demonstrated on a Duffing oscillator, prior to being applied to a full-scale aerospace structure.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Noël, Jean-Philippe ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Schoukens, Johan;  Vrije Universiteit Brussel - VUB > ELEC
Kerschen, Gaëtan  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
A stochastic framework for subspace identification of a strongly nonlinear aerospace structure
Publication date :
February 2014
Event name :
International Modal Analysis Conference (IMAC) XXXII
Event organizer :
SEM
Event place :
Orlando, United States - Florida
Event date :
du 2 février 2014 au 6 février 2014
Audience :
International
Main work title :
Proceedings of the International Modal Analysis Conference (IMAC) XXXII
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 23 January 2014

Statistics


Number of views
141 (10 by ULiège)
Number of downloads
292 (4 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi