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ABSTRACT

The present study exploits the maximum likelihood identification framework for deriving statistically-optimal mod-
els of nonlinear mechanical systems. The identification problem is formulated in the frequency domain, and model
parameters are calculated by minimising a weighted least-squares cost function. Initial values of the model param-
eters are obtained by means of a nonlinear subspace algorithm. The complete identification methodology is first
demonstrated on a Duffing oscillator, prior to being applied to a full-scale aerospace structure.
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1 INTRODUCTION

Even if nonlinear behaviour is known to be a frequent occurrence in structural dynamics ' =21, at least in certain regimes of mo-
tion, common practice in industry is still to ignore nonlinearity. It has however become obvious in recent years that, to satisfy the
continual interest in expanding the performance envelope of engineering systems, nonlinear components should be dealt with,
or may even be constructively exploited, in the design process. This is why the development of effective system identification
techniques applicable to nonlinear systems is today an active research area in the structural dynamics community . In this
context, the recently-introduced frequency-domain nonlinear subspace identification (FNSI) method ! is an interesting approach
because it benefits from the numerical robustness and efficacy of subspace algorithms, while maintaining an acceptable compu-
tational burden. Promising applications of the FNSI method to low- and high-dimensional nonlinear systems from numerical and
experimental data are reported in Refs. [°~71.

The major disadvantage of subspace identification techniques is that they derive estimates of the model parameters based on
deterministic arguments, and so do not provide any guarantee that the estimates still behave well in the presence of disturbing
noise. An alternative approach to the identification problem is to embed it in a stochastic framework through the minimisation of
a well-chosen cost function incorporating noise information .. In particular, the maximum likelihood cost function is particularly
attractive because it yields estimates of the model parameters with optimal stochastic properties. Moreover, by formulating the
cost function in the frequency domain, it is known to simplify to a weighted least-squares estimator. However, the maximum
likelihood suffers from issues typically arisen in optimisation problems, especially related to initialisation.



The contribution of the present work lies in the utilisation of the model parameter estimates provided by the FNSI method to
serve as starting values for the minimisation of the maximum likelihood cost function. This initialisation strategy possesses
the important advantage that the FNSI method generates a fully nonlinear model of the system under test, while classical
approaches commonly use a linear model of the nonlinear system as starting point . This ensures that the resulting maximum
likelihood model performs at least as good as the nonlinear FNSI model. A second advantage is that the FNSI framework offers
a convenient way to select an appropriate order for the nonlinear model, specifically using stabilisation diagrams, as described
in Ref. . The paper is organised as follows. Section 2 presents the model equations governing the vibrations of nonlinear
systems. Sections 3 and 4 give a condensed introduction to the theoretical background of the FNSI method and maximum
likelihood estimator, respectively. The proposed identification methodology is then demonstrated on a single-degree-of-freedom
Duffing oscillator in Section 5. Section 6 finally investigates the applicability of the methodology to a full-scale aerospace structure
possessing nonsmooth nonlinearities.

2 NONLINEAR MODEL EQUATIONS AND PROBLEM STATEMENT

The vibrations of nonlinear mechanical systems possessing an underlying linear regime of motion are governed by the time-
continuous model

Mq(t) + Co q(t) + K q(t) + g(a(t), q(t)) = p(t) (1)

where M, C,, K € R"»*"r are the linear mass, viscous damping and stiffness matrices, respectively; q(¢) and p(t) € R"»
are the generalised displacement and external force vectors, respectively; g(¢t) € R"? is the nonlinear restoring force vector
encompassing elastic and dissipative effects, and n,, is the number of degrees of freedom (DOFs) of the structure obtained after
spatial discretisation. The amplitude, direction, location and frequency content of the excitation p(t) determine in which regime
the structure behaves.

The effects of the r lumped nonlinear components in the system are represented using a linear-in-the-parameters model of the
form
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In this double sum, s, is the number of nonlinear basis functions h, (q(¢), q(t)) selected to describe the a-th nonlinearity,
and c,,, are the associated coefficients. The total number of nonlinear basis functions introduced in the model is equal to
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Given measurements of p(t) and q(¢) or its derivatives, and an appropriate user selection of the functionals h, ;(t), the identifi-
cation problem addressed in the present paper aims at computing estimates of the parameters of a state-space model describing
the dynamics governed by Eq. (1).

3 GENERATING INITIAL PARAMETER ESTIMATES USING A NONLINEAR SUBSPACE IDENTIFICATION METHOD
IN THE FREQUENCY DOMAIN

The FNSI method is a subspace identification algorithm dedicated to mechanical system models incorporating linear-in-the-
parameters nonlinearities 1°!. Linearity in the parameters avoids an iterative optimisation process, and issues related to initiali-
sation and convergence thereof. The technique exploits data in the frequency domain and is naturally a multi-input, multi-output
identification scheme as it constructs state-space models of nonlinear mechanical systems. Its implementation relies on robust
tools from numerical analysis, including QR and singular value decompositions.

3.1 Feedback interpretation of nonlinear structural dynamics and state-space model

The FNSI methodology builds on a block-oriented interpretation of nonlinear structural dynamics, which sees nonlinearities as a
feedback into the linear system in the open loop ['9), as illustrated in Fig. 1. This interpretation boils down to moving the nonlinear
internal forces in Eq. (1) to the right-hand side, and viewing them as additional external forces applied to the underlying linear
structure, that is

M(t) + o a(t) + K a(t) = p(t) = 33 can has(a(t), 4(t)). 3)

a=1 b=1
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Figure 1: Feedback interpretation of nonlinear structural dynamics 0.

Assuming that displacements are measured and defining the state vector x = (qT qT)T € R"™#, EqQ. (3) is recast in the state
space as the set of first-order equations

{x@) = Acx(t) + Bee(p(t), hos(1)) )
alt) = Cex(t) + Dee(p(t), has()

where subscript ¢ stands for continuous-time, and where the vector e € R (s+D7p tarmed extended input vector, concatenates
the external forces p(t) and the nonlinear basis functions h, ,(t). The matrices A, € R™=*"s, B, ¢ R":*+) e C, ¢ R0 X"
and D, € R™*TD ™ gre the state, extended input, output and direct feedthrough matrices, respectively. The dimension of
the state space is ns = 2 n,. State-space and physical-space matrices correspond through the relations

A Onpxnp Inpxnp B Onpxnp Onpxnp Onpxnp Onpxnp
cT\-M'K -M'cC, ° M?' —aqiM?' oM e M
C.= ( I Xnp Qg neXnp ) D. = Onpx(s-H) np (5)

where 0 and I are the zero and identity matrices, respectively. In a standard measurement setup, only limited sets of DOFs in
p(¢) and g(t) are excited and observed, respectively. The identification problem is therefore preferably stated in terms of [ applied
forces and m measured displacements collected in the vectors u(t) € R™="» and y(t) € R'<"», respectively. Accordingly, the
nonlinear basis functions vector is formed as h, ,(y(t), ¥ (t)), and the extended input vector is e(u(t), h, (t)) € R™* . Egs. (4)
become

{ x(t) = Acx(t)+ Bce(u(t), has(t)) (6)

y(t) = Cecx(t) +Dece(u(t), ha(t))

where A., B, C. and D. are now projections of the original matrices onto the controlled and observed DOFs. Note that no
identifiability condition constraints the number of measured displacements, provided that the nonlinear basis functions h, ()
can be formed from the recorded channels. In particular, [ can be lower than the model order n,, as will be demonstrated in
Section 6. In practice, the number of instrumented locations is generally dictated by the spatial resolution of the structural mode
shapes the user wants to obtain in order to limit linear modelling errors, and by the number of available sensors.

Although there is a full equivalence between time- and frequency-domain identification ¥, differences may arise in the way
acquired information is formulated in the two domains. In particular, experimental data are commonly recorded as frequency
responses, power spectral densities or merely discrete Fourier transform (DFT) spectra, which are all more compact than time-
domain data and, in turn, substantially decrease the computational burden. Moreover, frequency data provide an intuitive
understanding of the nature and importance of nonlinear distortions in the dynamics of the system under test 112/, These
arguments motivate the development of a nonlinear subspace methodology in the frequency domain.

It is however well-known that frequency-domain subspace algorithms formulated in continuous time are badly conditioned and
generally lead to poor estimates. This is due to the particular structure of the data matrices introduced in subspace identifica-
tion [°1. Solutions exist to improve the conditioning of the inverse problem in the continuous-time domain, such as the use of
the Forsythe recursions ? or the w-operator '*l. Nevertheless, we prefer to guarantee the good conditioning of the proposed
algorithm by means of a discrete-time transformation of Egs. (6), before applying the DFT. Eqgs. (6) eventually write

{ZfX(f) = AdX(f)+BdE(f) (7)
Y(f) = CaX(f)+DiE(f)



where subscript d stands for discrete-time, and where z; = e? 2" #/V is the Z-transform variable, and X(f), E(f) and Y (f) are
the DFTs of x(¢), e(u(t), he(t)) and y(t), respectively. A classical frequency-domain subspace resolution scheme can finally
be applied to Egs. (7) in order to identify the four discrete-time system matrices A4, B4, C4 and Dg. This application basically
involves the reformulation of Egs. (7) in matrix form, and the computation of estimates of the matrices through appropriate
geometrical manipulations of input and output data. The interested reader is referred to Ref. %! for a detailed introduction to the
theoretical and practical aspects of the FNSI method.

3.2 Conversion from discrete-time state space to continuous-time physical space

The estimated discrete-time model (Ki, By, Cu, ]il) is first converted into the continuous-time domain 1!, where the underlying
linear modal properties and the nonlinear coefficients ¢, of the system can next be estimated. To achieve the transformation
back to physical space, Eq. (2) is substituted into Eqg. (1) in the frequency domain to yield

G (@) Q) + 303 an Hap(w) = P(w) (8)

a=1b=1

where G(w) is the FRF matrix of the underlying linear system, and where Q(w), H, ,(w) and P(w) are the Fourier transforms
of q(t), ha,(t) and p(t), respectively. The concatenation of P(w) and H, ;(w) further introduces the extended input spectrum
E(w), so as to obtain the linear relationship between Q(w) and E(w)

Q) =G(w) [ I™*™  —ci  I™"™ . —c 1™ | E(w) = G°(w) E(w). (9)

Matrix G¢(w), termed extended FRF matrix, encompasses the underlying linear FRF matrix of the system and the nonlinear
coefficients. Moreover, Ref. [ proved that it is an invariant system property that can be calculated, similarly to linear theory,
from the combination of the continuous-time state-space matrices as

G*(w) = Co(jwI™ ™ — A,)"'B. + D.. (10)

As aresult, the nonlinear coefficients identified from G°(w) using Egs. (9) and (10) are spectral quantities, i.e. they are complex-
valued and frequency-dependent. This is an attractive property, because the importance of the frequency variations and imagi-
nary parts of the coefficients is particularly convenient for assessing the quality of the identification results. This possibility relies
on the fact that, in the noise-free case and in the absence of modelling errors, the real parts of the coefficients converge (for an
infinite number of measured samples) to their exact values with no frequency dependence, and the imaginary parts converge
to zero. A reliable identification scheme together with an appropriate selection of the nonlinear functionals h, ,(¢) should there-
fore make the imaginary parts much smaller than the corresponding real parts. The frequency dependence of the coefficients
should also remain small. An extensive analysis of the link between linear and nonlinear modelling errors and the frequency
dependence and imaginary parts of the nonlinear coefficients can be found in Ref. [,

4 OPTIMISING INITIAL PARAMETER ESTIMATES IN THE MAXIMUM LIKELIHOOD FRAMEWORK

The FNSI algorithm presented in Section 3 belongs to a family of identification methods relying on a deterministic approach.
Specifically, assuming that the noiseless input and output measurements obey specific model equations, namely the Newton’s
law of dynamics given in Eq. (1), the model parameters are retrieved by manipulating these equations by means of geometrical
operations. The major disadvantage of deriving an estimation technique based on deterministic arguments is that the user has
no guarantee that it behaves well in the presence of disturbing noise.

By contrast, a systematic approach to building an estimator in a stochastic framework is to formulate it as the minimiser of a
cost function, expressing the distance in some metric between model's predicted outputs and system’s measured outputs [ 16,
The cost function usually incorporates knowledge about the disturbing noise to ensure that the resulting estimator has a reliable
noise behaviour. In this context, the maximum likelihood cost function is particularly attractive because it yields estimates of
the model parameters with optimal stochastic properties, namely consistency and efficiency ®!. Loosely speaking, consistency
translates that the estimates converge to their true vales for an infinite number of measured samples. These estimates also
exhibit the lowest possible uncertainty given the signal-to-noise ratio, which is referred to as the efficiency property of the
maximum likelihood estimator (MLE).

The price to pay for consistency and efficiency is the knowledge of the probability density function of the noise in the formulation
of the maximum likelihood cost function. This is, in practice, a hard requirement to deal with. However, by applying the DFT to



input and output data, the distribution of noise can be proved to be Gaussian, with a predominantly-diagonal covariance matrix,
regardless its time-domain distribution 17}, This implies that the MLE boils down to a weighted least-squares estimator in the
frequency domain. Introducing the vector of model parameters

0= [vec (;&\c) ; vec (]é\c) ; vec (C/l\c) ; vec ([/)\c)] , (11)

where the vector operation denoted vec stacks the columns of a matrix on top of each other, the cost function V to minimise
hence writes

V(0) = "(f,0) W(f)e(f,6) (12)
f=1

where H denotes the conjugate transpose of a matrix, and F' is the number of frequency lines exploited in the identification. The
model error vector ¢(f,0) € C' is defined as the complex-valued difference

(f,0) = Ym(f,0) = Y(f) (13)

where Y,.(f, 8) and Y (f) are the DFTs of the modelled outputs in Egs. (6) and the measured outputs, respectively. Furthermore,
the matrix W (f) € C'*! introduced in Eqg. (12) discriminates between good and poor frequency measurements through a proper
weighting. It is typically chosen as the inverse of the covariance matrix of the outputs, which can be easily extracted directly from
recorded data if a periodic excitation signal is employed.

5 DEMONSTRATION ON A SINGLE-DEGREE-OF-FREEDOM DUFFING OSCILLATOR

In this section, the identification methodology proposed in Sections 3 and 4 is demonstrated using a single-degree-of-freedom
system with one nonlinearity, namely a Duffing oscillator. The vibrations of the Duffing oscillator are governed by the equation

M () + Co 4(t) + K q(t) + 1,1 ¢*(t) = p(t). (14)

The linear and nonlinear parameters selected in this analysis are listed in Table 1. The system was simulated using a nonlinear
Newmark time integration scheme, with a sampling frequency of 15000 H z. Simulated time series were then decimated down to
750 H  for practical use, considering low-pass filtering to avoid aliasing. The excitation p(t) was a random phase multisine B A
random phase multisine is a periodic random signal with an user-controlled amplitude spectrum. If an integer number of periods
is measured, this spectrum is perfectly realised, unlike classical Gaussian noise. The main advantage of a multisine is that its
periodic nature can be exploited to separate signal from noise, what leads to an easy estimation of the noise covariance matrix.
A multisine with a flat amplitude spectrum in 5 — 150 Hz was chosen herein, thus encompassing the third harmonics of the
oscillator around 110 Hz. The root-mean-squared (RMS) amplitude of the excitation was set to 100 N.

M (kg) C, (Ns/m) K (EN/m) c1.1 (MN/m®)
2 10 100 100
Natural frequency w (H z) Damping ratio € (%)
35.59 1.12

TABLE 1: Parameters of the Duffing oscillator.

The time simulation was conducted over 30 periods of 8192 samples, and Gaussian white noise was added to the synthetic
signals to recreate the disturbances observed in a real measurement setup. The noise level was set to 2 % of the RMS
amplitude of the response. The first 5 periods of measurement were rejected to settle the transients, and the last 5 periods
were saved for validation purposes. Measurements were averaged over the remaining 20 periods to mitigate noise and obtain a
sample estimate of its covariance matrix. Throughout the paper, it is assumed that noise corrupts the system’s outputs q(¢) only,
whereas the nonlinear basis functions h, ;(q(t), q(t)) are observed without errors. This is a simplifying assumption because the
basis functions are typically formed in practice using displacements and velocities obtained by integrating noisy accelerometer
signals. One exception that should yet be pointed out is the direct measurement of the displacements at the nonlinearity
locations, using techniques such as scanning laser Doppler vibrometers % % which provide very large signal-to-noise ratios.

The first step of the identification methodology is the application of the FNSI method to obtain initial estimates of the parameters
of a state-space model of the system. In the case of the Duffing, this model comprises 12 parameters, i.e. all the elements of
the matrices A., B., C. and D, in Egs. (6), given 2 states, 1 input, 1 nonlinear basis function and 1 output. The 12 state-space



Error on w (%) Error on € (%) Error on ¢y ,1 (%)

FNSI -1010* -0.13 0.71
MLE 410~* -0.02 1.29

TABLE 2: Relative errors on the estimation of the natural frequency w, damping ratio e and nonlinear coefficient ¢;,; of the
Duffing oscillator using the FNSI method (first row) and the MLE (second row).

parameters can be converted into estimates of the natural frequency, damping ratio and nonlinear coefficient of the oscillator, as

explained in Section 3.2. They are given in the first row of Table 2 through relative errors, and are found to be in good agreement
with their reference values.

However, these 3 parameters do not convey a thorough assessment of the accuracy of the subspace model. A sounder basis for
this assessment is the direct comparison of the measured and reconstructed output spectra of the system, as achieved in Fig. 2.
This figure reveals that the prediction of the subspace model suffers from important modelling errors, in particular in the vicinity
of resonance. A similar conclusion is drawn from the analysis of the corresponding time series presented in Fig. 3, where the
RMS value of the FNSI error is equal to 1.68 mm, compared to the RMS amplitude of the response of 4.25 mm.

The modelling errors of the subspace model can be significantly reduced by minimising the maximum likelihood objective function
in Eq. (12). The resulting error on the prediction of the output spectrum is showed after 10 iterations in Fig. 2 using blue circles.
Modelling errors have now an amplitude comparable to the noise level. Note, however, that the improvements brought to the
estimation of the parameters w, € and c;,1 remain marginal (see Table 2). The error of the maximum likelihood model is also
plotted in the time domain in Fig. 3, and corresponds to a RMS value of 0.02 mm. The good behaviour of the MLE is finally

confirmed in Fig. 4, where the prediction errors of both subspace and maximum likelihood models are computed on validation
data.
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Figure 2: Output spectrum of the Duffing oscillator. Black cross: measured spectrum averaged over 20 periods; red plus: error
of the FNSI model; blue circle: error of the MLE model; black square: noise level.
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Figure 3: Time response of the Duffing oscillator. Black: measured response averaged over 20 periods; red: error of the FNSI
model; blue: error of the MLE model.
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Figure 4: Validation of the subspace and maximum likelihood models. Black cross: measured output spectrum averaged over 5
periods; red plus: error of the FNSI model; blue circle: error of the MLE model; black square: noise level.



6 APPLICATION TO A FULL-SCALE STRONGLY NONLINEAR SATELLITE STRUCTURE

This section investigates the applicability of the proposed identification methodology in the case of a full-scale aerospace struc-
ture possessing honsmooth nonlinearities, the SmallSat spacecraft developed by EADS-Astrium.

6.1 Description and modelling of the SmallSat spacecraft

The SmallSat structure was conceived by EADS-Astrium as a low-cost platform for small satellites in low earth orbits 2, Itis a
monocoque tube structure which is 1.2 m in height and 1 m in width. It is composed of eight flat faces for equipment mounting
purposes, creating an octagon shape, as shown in Figure 5. The octagon is manufactured using carbon-fibre-reinforced plastic
by means of a filament winding process. The structure thickness is 4 mm with an additional 0.25-mm-thick skin of Kevlar applied
to both the inside and outside surfaces to provide protection against debris. The top floor is an 1-m? sandwich aluminium panel,
with 25-mm core and 1-mm skins. The interface between the spacecraft and launch vehicle is achieved via four aluminium
brackets located around cut-outs at the base of the structure. The total mass including the interface brackets is around 64 kg.

SASSA

Figure 5: SmallSat spacecraft equipped with an inertia wheel supported by the WEMS device and a dummy telescope connected
to the main structure by the SASSA isolators.

The spacecraft structure supports a dummy telescope mounted on a baseplate through a tripod; its mass is around 140 kg. The
dummy telescope plate is connected to the SmallSat top floor by three shock attenuators, termed shock attenuation system for
spacecraft and adaptor (SASSA) 2!, whose behaviour is considered as linear in this study. Besides, as depicted in Figure 6 (a),
a support bracket connects to one of the eight walls the so-called wheel elastomer mounting system (WEMS) device which
is loaded with an 8-kg dummy inertia wheel. The WEMS device acts as a mechanical filter which mitigates high-frequency



disturbances coming from the inertia wheel through the presence of a soft elastomeric interface between its mobile part, i.e. the
inertia wheel and a supporting metallic cross, and its fixed part, i.e. the bracket and by extension the spacecraft. Moreover, the
WEMS incorporates eight mechanical stops, covered with a thin layer of elastomer, and designed to limit the axial and lateral
motions of the inertia wheel during launch, which gives rise to strongly nonlinear dynamical phenomena.

Figure 6 (b) presents a simplified, yet relevant, modelling of the WEMS device where the inertia wheel, owing to its important
rigidity, is seen as a point mass. The four nonlinear connections (NCs) between the WEMS mobile and fixed parts are labelled
NC 1 — 4. Each NC possesses a trilinear spring in the axial direction (elastomer in traction/compression plus two stops), a
bilinear spring in the radial direction (elastomer in shear plus one stop) and a linear spring in the third direction (elastomer in
shear). In Figure 6 (b), linear and nonlinear springs are denoted by squares and circles, respectively.

Mechanical SmallSat
stop O

Metallic NC 4 @
cross O §

Inertia wheel

— |
| N NC 1

Filtering
elastomer plot

Bracket

S § Inertia
Metallic wheel

Z Cross

Y
X @ (b) X

Figure 6: WEMS device. (a) Detailed description of the WEMS components; (b) simplified modelling of the WEMS mobile part
considering the inertia wheel as a point mass. The linear and nonlinear connections between the WEMS mobile and fixed parts
are signalled by squares and circles, respectively.

A finite element model (FEM) of the SmallSat was developed in Samcef software and used in the present work to conduct
numerical experiments. It comprises about 65000 DOFs and the comparison with experimental data revealed its good predictive
capabilities. The model consists of shell elements (octagon structure and top floor, instrument baseplate, bracket and WEMS
metallic cross) and point masses (dummy inertia wheel and telescope) and meets boundary conditions with four clamped nodes.
Proportional damping is considered and the high dissipation in the elastomer components of the WEMS is described using
lumped dashpots, hence resulting in a highly non-proportional damping matrix. Table 3 gives the natural frequencies w and
damping ratios ¢ of the first 11 modes of the SmallSat up to 50 Hz, together with a brief description of the corresponding
deformations of the structure. One remarks that the WEMS local modes, which are likely to involve nonlinear dynamics, are
clustered in two groups around 9 and 23 Hz. Subsequent resonances involve bracket bending and axial and lateral motions of
the telescope supporting panel.

To achieve tractable nonlinear calculations, the linear elements of the FEM were condensed using the Craig-Bampton reduction
technique. This approach consists in expressing the system dynamics in terms of some retained DOFs and internal modes of
vibration. Specifically, the full-scale model of the spacecraft was reduced to 13 nodes (excluding DOFs in rotation), namely both
sides of each NC (8), the inertia wheel point mass (1) and the four corners of the instrument baseplate (4), and 100 internal
modes. In total, the reduced-order model thus contains 139 DOFs. Piecewise-linear springs were finally introduced within the
WEMS module between the NC nodes considering clearances and stiffness parameters identified experimentally 22 and listed
in Table 4. To avoid numerical issues, third-order polynomials were utilised in the close vicinity of the clearances to implement
C' continuity.



Mode

O wWN

10

11

Natural

frequency w (H=z)

8.55
8.97
18.17
22.31
23.17
31.57
31.59
32.66
37.47
38.25

43.31

Damping
ratio € (%)

10.77
11.09
24.55
12.14
11.31
5.46
2.10
2.57
2.27
2.33

251

Description

Concave motion of the
WEMS mobile part (WMP) along X
Symmetric to mode 1 along Y
Rotation of the WMP around Z
Convex motion of the WMP along X
Symmetric to mode 4 along Y
Bracket bending and
in-phase motion of the WMP along Z
Bracket bending and
rotation of the instrument panel (IP)
Bracket bending and
rotation of the IP perpendicularly to mode 7
Rotation of the IP similarly to mode 8
and rotation around Z
Main structure bending and in-plane motion
of the IP in phase
Rotation of the IP similarly to mode 8

TABLE 3: Natural frequencies w and damping ratios e of the first 11 modes of the SmallSat up to 50 H z and description of the

corresponding deformations of the structure.

X1
X2
X3
X4
Y1
Y2
Y3
Y4
Z1
Z2
Z3
Z4

Neg. clearance

1.90

1.90
1.01
0.84
0.93
0.93

Pos. clearance

1.93
1.55
1.62
1.59
1.59

Linear stiffness

0.70
0.75
0.77
0.55
0.82
0.70
0.58
1.02
8.30
9.21
9.18
10.03

Neg. nonlinear stiffness Pos. nonlinear stiffness

26.76 —

— 46.23
26.76 —

— 46.23

118.07 79.40

116.73 88.41

118.07 79.40

116.73 88.41

TABLE 4: Experimental clearances and stiffness parameters of the WEMS piecewise-linear springs given through adimensional
values for confidentiality reasons.



6.2 Activation of a single nonlinearity of the WEMS device

A multisine with a flat amplitude spectrum in 5 — 50 Hz was applied in the axial direction to NC 2 on the inertia wheel side.
Time integration was carried out over 30 periods of 8192 samples using a nonlinear Newmark scheme considering a sampling
frequency of 20000 Hz. Time series were subsequently decimated down to 1000 Hz. The amplitude and the location of the
excitation caused axial impacts exclusively in NC 2. The level of Gaussian noise added to the synthetic signals was set to 2 % of
the RMS amplitude of the axial response at the inertia wheel node. Similarly to the analysis of the Duffing oscillator in Section 5, 3
periods were rejected to avoid transient distortions, and 5 periods were kept for validating the subspace and maximum likelihood
models. The average of the 22 remaning periods eventually yielded an estimate of the covariance matrix of noise corrupting
each channel.

The first step toward formulating a nonlinear subspace model of the SmallSat dynamics is the selection of an adequate model
order, which translates the number of linear modes excited in the output data B In linear system identification, stabilisation
diagrams are most frequently exploited as decision-making tools and have proved successful in numerous industrial applications.
A distinct advantage of the FNSI method is that it still allows the use of the stabilisation diagram for retrieving linear system
parameters from nonlinear data [, Fig. 7 charts the stabilisation of the natural frequencies, damping ratios and mode shapes
of the structure for model orders up to 60. This analysis was conducted using only three output sensors, namely the axial
DOFs of both nodes of NC 2 and of the inertia wheel node. This corresponds to the practical situation where the number
of available channels is limited and where system’s responses are only recorded close to the nonlinearity. Note also that the
modal assurance criterion for complex-valued mode shapes (MACX), as defined in reference 2], is utilised in this diagram as
the damping mechanisms in the SmallSat were shown to be highly non-proportional. Fig. 7 shows full stabilisation of 4 modes
at order 10. However, since this is tested between two successive model orders taking as reference the lowest order, equal
stabilisation is also achieved at order 8, which is therefore selected to avoid spurious poles.

The genuine poles captured at order 8 correspond to modes 1, 4, 6 and 8 of the structure. Table 5 lists the relative errors on the
estimates of their natural frequencies and damping ratios and the diagonal MACX values between the identified and exact mode
shapes. The selection of order 8 results in a state-space model with 121 parameters, given 8 states, 1 input, 2 nonlinear basis
functions and 3 outputs. The recourse to two nonlinear basis functions translates the activation of the negative and positive axial
mechanical stops at NC 2. The associated coefficients are depicted in Fig. 8 using black lines and are listed in Table 6 through
the averaged values of their real parts, relative errors and ratios between their real and imaginary parts.

Mode Error on w (%) Error on ¢ (%) MACX
FNSI MLE FNSI MLE FNSI MLE
1 -0.17 -0.16 -0.54 -0.62 1.00 1.00
4 0.05 0.06 -0.64 -0.62 1.00 1.00
6 -0.20 -0.18 -6.31 -6.38 1.00 1.00
8 0.07 0.07 13.69 13.84 1.00 1.00

TABLE 5: Relative errors on the estimated linear natural frequencies and damping ratios (in %) and diagonal MACX values
computed by the FNSI method and the MLE using three measured channels.

Real part Error (%) log1g (Real/imag.)

FNSI MLE FNSI MLE FNSI MLE

Neg. nonlinear coefficient 117.80 100.54 0.92 -13.87 3.05 1.09
Pos. nonlinear coefficient 88.74 102.63 0.37 16.09 1.95 1.83

TABLE 6: Estimates of the negative and positive nonlinear stiffness coefficients at NC 2 computed by FNSI and the MLE. Real
parts averaged over 5 — 50 H z, relative errors (in %) and ratios between the real and imaginary parts (in logarithmic scaling).
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Figure 7: Stabilisation diagram computed by the FNSI method using three measured channels. Cross: stabilisation in natural
frequency; square: extra stabilisation in damping ratio; circle: extra stabilisation in MACX; triangle: full stabilisation. Stabilisation
thresholds in natural frequency, damping ratio and MACX value are 2 %, 5 % and 0.98, respectively.
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Figure 8: Real parts of the estimates of the negative (solid lines) and positive (dashed lines) nonlinear stiffness coefficients at
NC 2 computed by FNSI (black lines) and the MLE (blue lines).



Fig. 9 shows the comparison between the measured output spectrum at the inertia wheel in the Z direction and the error of
the corresponding spectrum predicted by the FNSI model. Important modelling errors can be observed, though being generally
located 10 dB below the response level. The time responses associated with Fig. 9 are plotted in Fig. 10. The RMS value of
the system’s response is equal to 0.77 mm, while the subspace modelling error is limited to a RMS value of 0.11 mm. The
application of maximum likelihood iterations to the initial subspace model leads to a clear decrease of the modelling errors,
as evidenced in Fig. 9 through the blue circles and in Fig. 10 with the blue curve corresponding to a RMS value of 0.03 mm.
As in Section 5, the MLE yields no improvement of the estimates of the modal properties (see Table 5). One also notes in
Table 6 and in Fig. 8 that it degrades the estimation of the nonlinear coefficients. Moreover, unlike the case of the Duffing
oscillator, the modelling errors corresponding to the maximum likelihood model cannot be reduced down to the noise level. This
inability to eliminate modelling errors completely is also clearly visible on validation data, as presented in Fig. 11. All this can be
attributed to several factors, including linear modelling errors due to the limited number of processed channels, inaccuracies in
the computation of the Jacobian matrix of the problem which was realised using central finite differences, and the presence of
local minima in the weighted least-squares objective function.

Z output spectrum at the inertia wheel (dB)

_1 2 | | L
05 10 20 30 40 50
Frequency (Hz)

Figure 9: Output spectrum at the inertia wheel in the Z direction. Black cross: measured spectrum averaged over 23 periods;
red plus: error of the FNSI model; blue circle: error of the MLE model; black square: noise level.
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Figure 10: Time response at the inertia wheel in the Z direction. Black: measured response averaged over 23 periods; red: error
of the FNSI model; blue: error of the MLE model.
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Figure 11: Validation of the subspace and maximum likelihood models at the inertia wheel in the Z direction. Black cross:

measured output spectrum averaged over 5 periods; red plus: error of the FNSI model; blue circle: error of the MLE model; black
square: noise level.



7 CONCLUSIONS

The objective of the present paper was to combine the advantages of the subspace and maximum likelihood estimators to derive
a stochastic identification framework dedicated to nonlinear mechanical systems. For that purpose, the recently-introduced FNSI
method was employed to generate an initial state-space model of the system. A weighted least-squares objective function in the
frequency domain was then minimised to obtain statistically-optimal parameter estimates. The methodology was successfully
demonstrated on a Duffing oscillator. Its applicability was also investigated in the case of a large-scale satellite structure exhibiting
strongly nonlinear dynamics. In this second application, significant reduction of the subspace modelling errors was attained,
without however being able to eliminate them completely. Further work should therefore focus on the improvement of the
maximum likelihood cost function through, e.g., a careful analysis of the linear modelling errors and an exact computation of the
Jacobian matrix of the optimisation problem. A particular attention should also be devoted to this Jacobian matrix as it may lead
to the calculation of uncertainty bounds for the model parameters.
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