Neutrino mass and mixing; Non-standard model neutrinos
Abstract :
[en] We propose a model-independent analysis of the neutrino mass matrix through an expansion in terms of the eigenvectors defining the lepton mixing matrix, which we show can be parametrized as small perturbations of the tribimaximal mixing eigenvectors. This approach proves to be powerful and convenient for some aspects of lepton mixing, in particular when studying the sensitivity of the mass matrix elements to departures from their tribimaximal form. In terms of the eigenvector decomposition, the neutrino mass matrix can be understood as originating from a tribimaximal dominant structure with small departures determined by data. By implementing this approach to cases when the neutrino masses originate from different mechanisms, we show that the experimentally observed structure arises very naturally. We thus claim that the observed deviations from the tribimaximal mixing pattern might be interpreted as a possible hint of a ``hybrid'' nature of the neutrino mass matrix.
Disciplines :
Physics
Author, co-author :
Aristizabal Sierra, Diego ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Physique des astroparticules
Houet, Eric; Université de Liège - ULiège
Ivo, Medeiros Varzielas; Dortmund University > Physics
Language :
English
Title :
Eigenvector-based approach to neutrino mixing
Publication date :
March 2013
Journal title :
Physical Review. D, Particles, Fields, Gravitation, and Cosmology
ISSN :
1550-7998
eISSN :
1550-2368
Publisher :
American Physical Society, College Park, United States - Maryland
G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010). RMPHAT 0034-6861 10.1103/RevModPhys.82.2701
S. F. King and C. Luhn, Rep. Prog. Phys. 76, 056201 (2013). RPPHAG 0034-4885 10.1088/0034-4885/76/5/056201
L. J. Hall, H. Murayama, and N. Weiner, Phys. Rev. Lett. 84, 2572 (2000); PRLTAO 0031-9007 10.1103/PhysRevLett.84.2572
A. de Gouvea and H. Murayama, arXiv:1204.1249.
F. P. An (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.171803
J. K. Ahn (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.191802
G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, and A. M. Rotunno, Phys. Rev. Lett. 101, 141801 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.141801
P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B 530, 167 (2002). PYLBAJ 0370-2693 10.1016/S0370-2693(02)01336-9
D. V. Forero, M. Tortola, and J. W. F. Valle, Phys. Rev. D 86, 073012 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.073012
M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, and T. Schwetz, J. High Energy Phys. 12 (2012), 123. JHEPFG 1029-8479 10.1007/JHEP12(2012)123
G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, and A. M. Rotunno, Phys. Rev. D 86, 013012 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86. 013012
S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979). PRLTAO 0031-9007 10.1103/PhysRevLett.43.1566
P. Minkowski, Phys. Lett. 67B, 421 (1977); PYLBAJ 0370-2693 10.1016/0370-2693(77)90435-X
T. Yanagida, in Proceedings of Workshop on Unified Theory and Baryon Number in the Universe, edited by, O. Sawada, and, A. Sugamoto, (KEK, Tsukuba, 1979), p. 95;
M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by, P. van Niewenhuizen, and, D. Z. Freedman, (North Holland, Amsterdam 1980), p. 315;
P. Ramond, arXiv:hep-ph/9809459;
S. L. Glashow, in Quarks and Leptons, Cargèse lectures, edited by, M. Lévy, (Plenum, New York, 1980), p. 707;
R. N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980); PRLTAO 0031-9007 10.1103/PhysRevLett.44.912
J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980); PRVDAQ 0556-2821 10.1103/PhysRevD.22.2227
J. Schechter J. W. F. Valle Phys. Rev. D 25, 774 (1982). PRVDAQ 0556-2821 10.1103/PhysRevD.25.774
J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980); PRVDAQ 0556-2821 10.1103/PhysRevD.22.2227
G. Lazarides, Q. Shafi, and C. Wetterich, Nucl. Phys. B181, 287 (1981); NUPBBO 0550-3213 10.1016/0550-3213(81)90354-0
R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981); PRVDAQ 0556-2821 10.1103/PhysRevD.23.165
C. Wetterich, Nucl. Phys. B187, 343 (1981). NUPBBO 0550-3213 10.1016/0550-3213(81)90279-0
S. F. King, Phys. Lett. B 659, 244 (2008). PYLBAJ 0370-2693 10.1016/j.physletb.2007.10.078
S. Pakvasa, W. Rodejohann, and T. J. Weiler, Phys. Rev. Lett. 100, 111801 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.111801 (Pubitemid 351457205)
K. Kojima and H. Sawanaka, Phys. Lett. B 678, 373 (2009). PYLBAJ 0370-2693 10.1016/j.physletb.2009.06.046
S. F. King, Phys. Lett. B 675, 347 (2009). PYLBAJ 0370-2693 10.1016/j.physletb.2009.04.031
S. Morisi, K. M. Patel, and E. Peinado, Phys. Rev. D 84, 053002 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.84.053002
D. A. Sierra, F. Bazzocchi, and I. de Medeiros Varzielas, Nucl. Phys. B858, 196 (2012). NUPBBO 0550-3213 10.1016/j.nuclphysb.2012.01.009