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An eigenvector based approach to neutrino mixing
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We propose a model-independent analysis of the neutrino mass matrix through an expansion in
terms of the eigenvectors defining the lepton mixing matrix, which we show can be parametrized as
small perturbations of the tribimaximal mixing eigenvectors. This approach proves to be powerful
and convenient for some aspects of lepton mixing, in particular when studying the sensitivity of
the mass matrix elements to departures from their tribimaximal form. In terms of the eigenvector
decomposition, the neutrino mass matrix can be understood as originating from a tribimaximal
dominant structure with small departures determined by data. By implementing this approach to
cases when the neutrino masses originate from different mechanisms, we show that the experimen-
tally observed structure arises very naturally. We thus claim that the observed deviations from the
tribimaximal mixing pattern might be interpreted as a possible hint of a “hybrid” nature of the
neutrino mass matrix.
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There are two main approaches to describe lepton fla-
vor mixing. One is based on assuming the mixing is
governed by a fundamental organizing principle, such as
a flavor symmetry, which dictates the structure of the
lepton mixing pattern and might eventually account for
quark mixing as well (see e.g. [1, 2]). The other, usu-
ally referred to as the anarchy approach, postulates that
lepton mixing originates from a random distribution of
unitary 3×3 matrices [3]. In either case these approaches
are far from providing an ultimate solution to the lep-
ton flavor puzzle. Before the striking measurements of
θ13 [4, 5], even though global fits had hinted to a non-
vanishing θ13 [7], lepton mixing was well described by
the Tribimaximal mixing (TBM) pattern [6] defined by
sin2 θ12 = 1/3, sin2 θ23 = 1/2 and sin2 θ13 = 0. The
TBM pattern was for almost a decade a paradigm since
its regularity is very suggestive of an underlying princi-
ple at work. With a vanishing θ13 now excluded at more
than 10σ [8] the situation has changed somewhat. The
advent of experimental data proving non-vanishing θ13
and deviations of the best-fit-point values (BFPVs) of
the other angles (particularly θ23) from their TBM val-
ues [8, 11, 12] has greatly motivated the search for pos-
sible mechanisms yielding the required deviations from
the TBM pattern, which almost without exception are
induced by effective operators. In this way, flavor mod-
els unable to produce “large” deviations on θ13 from its
TBM value have been ruled out, and often deviations on
the TBM pattern must be sourced from next-to-leading
order non-renormalizable operators, constraining model
building.
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Majorana neutrino masses can be incorporated in the
standard model Lagrangian through the dimension five
effective operator O5 ∼ LLHH [9], the type-I seesaw
[10] being the most popular and simplest realization of
this operator. Other realizations have been considered
as pathways to neutrino masses but often the resulting
neutrino mass matrix is solely sourced by a single set of
lepton number violating parameters, e.g. in type-I see-
saw the right-handed neutrino masses. However, given
the multiple realizations of O5 a conceivable possibility
is that in which the neutrino mass matrix involves several
independent sets of lepton number breaking parameters,
a situation we refer to generically as “hybrid neutrino
masses”, as would be the case e.g. in a scheme involving
interplay between type-I and type-II seesaw [18]. Al-
ready with two contributions sourcing the neutrino mass
matrix several scenarios for neutrino mixing arising from
interplay between them can be envisaged.

In this article we start by using an expansion of
the neutrino mass matrix in terms of the eigenvec-
tors of the lepton mixing matrix as an alternative
model-independent parametrization of the experimen-
tally known values. Given that our parametrization is
based on deviations from TBM values, there are some
similarities to existing parametrizations such as [13]. We
show the usefulness of the treatment based on eigenvec-
tors by studying the constraints on the different mass
matrix elements imposed by deviating from TBM, which
become evident when using this approach due to the
TBM + deviations structure the mass matrix exhibits.
We proceed by harnessing this parametrization to ana-
lyze the different possibilities that arise with hybrid neu-
trino masses, and presenting a very appealing scenario
where one of the contributions exhibits a purely TBM
form that would be well motivated by a flavor symme-
try, while the corresponding deviations, required by data
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are naturally accounted for by the other contribution.
In this way we present a paradigm for neutrino masses
that matches the qualitative features required by neu-
trino data and in which the deviations from TBM are
interpreted as proof of the existence of hybrid neutrino
masses.

In the flavor basis (where charged leptons are diagonal)
the light neutrino mass matrix can be written as (hence-
forth we will denote matrices and vectors in boldface)

mν = U∗ m̂ν U
† , (1)

where m̂ν = diag(mν1 ,mν2 ,mν3) and with U the lepton
mixing matrix.

For any experimentally allowed point in parameter
space, one can define the eigenvector vi associated to
the eigenvalue mνi and thus

U = {v1,v2,v3} =

U11 U12 U13

U21 U22 U23

U31 U32 U33

 , (2)

where each vi is a column and the neutrino mass matrix
can be expressed as the outer (tensor) product of the
eigenvectors

mν =

3∑
i=1

mνi vi ⊗ vi . (3)

Consistency with data requires at least two eigenvectors
to be present in the above decomposition, and we refer
to those cases as “minimal”. In the normal hierarchy a
viable minimal setup involves v2,3, with v1,2 necessary
in the inverted case.

We parametrize the mixing angles starting from TBM
1:

sin θ12 = sin θTBM
12 − ε12 =

1√
3
− ε12 , (4)

sin θ23 = sin θTBM
23 − ε23 =

1√
2
− ε23 , (5)

sin θ13 = sin θTBM
13 + ε13 = ε13 . (6)

This is useful as according to neutrino data [8, 11, 12], the
εij parameters are small: at the 3σ level, for the normal
hierarchy data according to [8], we extract their ranges
as

ε12 ⊂ [−0.0309, 0.0577] , (7)

ε23 ⊂ [−0.117, 0.107] , (8)

ε13 ⊂ [0.130, 0.181] . (9)

1 Similar parametrizations have been discussed for the leptonic
mixing matrix in [14, 15] and with special emphasis to a non-
vanishing θ13 angle in [16, 17].

Using this parametrization the eigenvectors vi can be
expressed in terms of the εij parameters. We write

vi = vTBM
i + εi , (10)

with the TBM eigenvectors in UTBM given by

{vTBM
1 ,vTBM

2 ,vTBM
3 } =

 √2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2

 .

(11)
The perturbation vectors εi can be simplified by expand-
ing the trigonometric functions entering in U up to sec-
ond order in εij

2. By fixing δ = 0 for illustration (this
does not affect the main conclusions), they read

ε1 =

 ε12/
√

2

ε12/
√

2− (ε13 + ε23)/
√

3

ε12/
√

2 + (ε13 + ε23)/
√

3

 , (12)

ε2 =

 −ε12
ε12/2− ε13/

√
6 +
√

2ε23/
√

3

ε12/2 + ε13/
√

6−
√

2ε23/
√

3

 , (13)

ε3 =

−ε13ε23
ε23

 . (14)

With the eigenvectors written as perturbations of the
vTBM
i , the neutrino mass matrix can be conveniently in-

terpreted as originating from a TBM structure with mod-
ifications that are fixed whenever a given point in the
corresponding experimental data range is selected, that
is to say

mν =

3∑
i=1

mνi

[(
vTBM
i ⊗ vTBM

i

)
+ Vi

]
, (15)

with

Vi =
[(
vTBM
i ⊗ εi

)
+
(
εi ⊗ vTBM

i

)
+ (εi ⊗ εi)

]
. (16)

It is clear that consistency with data at a certain con-
fidence level requires some entries of the mass matrix to
significantly deviate from the TBM structure. In order
to quantify these deviations we calculated the different
mass matrix elements through eqs. (15) and (16). In
fig. 1 we display numerical results of the different mass
matrix entries (normalized to the corresponding TBM en-
tries), Rij = mνij/m

TBM
νij , varying with θ13 and θ23 (the

variation with θ12 is weaker, so we do not display it). We
used the 3σ ranges of the angles for the normal hierar-
chical spectrum according to reference [8], with the re-
maining parameters fixed to their BFPVs and the lightest

2 When compared with the exact expressions this approximation
deviates at the permille level, and unitarity of U is guaranteed
up to corrections of order ε3.
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FIG. 1. Sensitivity of the neutrino mass matrix entries, normalized to their TBM values, to departures from the TBM mixing
pattern in the case of normal hierarchical light neutrino mass spectrum and for δ = 0. Left-plot shows the dependence with
sin θ13 while the right-panel one with sin θ23 (both angles taken in their 3σ experimental range). See the text for more details.

neutrino mass set to 10−3 eV (the results are quite insen-
sitive to this parameter). These results indicate clearly
that deviating from θTBM

13 = 0 requires mν12 and mν13 to
have sizable departures from their TBM values together
with small departures in the mν11 entry. It can be seen
in fig. 1 that the other elements remain flat, not play-
ing a relevant role. With θ23 the situation is different:
deviating from θTBM

23 = π/4 demands large deviations
from the TBM structure in mν13 and mν12 , but mν22 and
mν23 need also to differ from their TBM values. For θ12
the results look similar in the sense that deviations from
θTBM
12 are mostly determined by variations of mν12 and
mν13 entries. Overall in the δ = 0 case deviations of the
neutrino mixing angles from their TBM values require
neutrino mass matrices with sizable deviations from the
TBM structure mainly in the mν12 and mν13 elements,
and this conclusion holds independently of the neutrino
mass spectrum.

Whether these deviations depend more strongly on de-
viations of θ13 or θ23 from their TBM values is something
which can not be determined from Fig. 1. In order to see
which of these TBM deviations dictate sizable deviations
of mν12,13 , in Fig. 2 we plot isocurves of both R12 and
R13 showing their dependence with sin θ13,23. It can be
seen that although the deviations of mν12 (mν13) exhibit
a slightly more pronounced dependence on θ13 (θ23) they
are clearly not strongly dominated by a single mixing
angle. Thus, deviating from TBM either in θ13 or θ23
requires sizable deviations on both mν12,13 . We empha-
size that results in Fig. 1 as well as in Fig. 2 apply in
the flavor basis, and that we obtained these conclusions
following from the useful eigenvector decomposition ap-
proach in a model-independent way.

We now apply our formalism to hybrid neutrino masses
(i.e. receiving contributions from physically distinct
sources, such as different seesaw mechanisms). In the
case with two sources with superindices A,B the effec-

tive light neutrino mass matrix reads 3

mν = m(A)
ν + m(B)

ν . (17)

From equation (1) we have

m̂ν = UT
(
m(A)
ν + m(B)

ν

)
U . (18)

and in general situation U diagonalizes the sum but not

the individual matrices m
(A,B)
ν . The contributions must

add up to (15) but their individual structure needs not be
determined by the eigenvectors of U . The most general
decomposition can be written as

m(X)
ν =

∑
i

[
m(X)
νi vTBM

i ⊗ vTBM
i + δm(X)

νi Vi
]
, (19)

where X = A,B and by definition, (18) requires m
(A)
νi +

m
(B)
νi = δm

(A)
νi + δm

(B)
νi = mνi . We stress that any real-

ization of hybrid neutrino masses can be defined accord-
ing to the terms entering in each contribution. Consis-

tency requires that when combining m
(A,B)
ν through (17)

the eigenvectors entering in the full mass matrix sum up
to (10), or in other words that the matrix associated with
the generation index i has at the end a structure like (15).
Regardless of which eigenvectors appear in each individ-
ual contribution, the orthogonality relation vi · vj = δij
guarantees the lepton mixing matrix diagonalizes the re-
sulting mν (due to vi being approximate, this holds up
to corrections at most of order vTBM

kl εij ∼ 10−1). In-
deed, it is useful to apply the eigenvector decomposition
to each contribution as it is made clear that the only

3 It is straightforward to generalize to hybrid cases with more con-
tributions.
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FIG. 2. Contourplots showing the simultaneous dependence of R12 (left-hand side plot) and R13 (right-hand side plot) with
sin θ13 and sin θ23. The plots have been obtained by fixing the remaining neutrino oscillation parameters as in Fig. 1.

way for the eigenvectors building either m
(X)
ν to appear

in U unchanged is if they are already orthogonal, which
in general will not be the case. For illustration, we con-
sider a minimal setup (minimal in terms of the number
of parameters defining the full neutrino mass matrix)

m(A)
ν = mν2v

TBM
2 ⊗ vTBM

2 , (20)

m(B)
ν = mν3v3 ⊗ v3 +mν2V2 . (21)

In this case the vector v2 becomes “completed” through

the combination of m
(A)
ν and the second term in m

(B)
ν .

This can be seen explicitly as it results in a particular
case of (15). Minimal setups are appealing as there are
only 6 defining parameters (with a phase in addition to
the 3 εij), so there is no room for arbitrariness on the
parameter space in order to match the neutrino oscilla-
tion observables (∆m21,32, θij and δ). Although at the
expense of introducing more parameters, going beyond
minimal cases can lead to other possibilities. A classifi-
cation according to the number of eigenvectors included
in each mechanism can be done in analogy to the one
shown in ref [19] for the exact TBM pattern.

Another appealing setup (minimal or not) is one where

one of the structures (e.g. m
(A)
ν ) is chosen to involve only

TBM eigenvectors (as in (20)). In non-minimal scenarios
of this type we can have the TBM pattern arise solely
from one of the contributions while the other entirely
accounts for the observed deviations. This corresponds

to setting δm
(A)
νi = m

(B)
νi = 0 in (19):

m(A)
ν =

∑
i

mνiv
TBM
i ⊗ vTBM

i ,

m(B)
ν =

∑
i

mνiVi , (22)

which is very suggestive that the experimentally observed

small deviations from the TBM pattern may be inter-
preted as a hint that nature is described by hybrid neu-
trino masses. With the measured deviations from TBM
such a scenario is extremely natural: in general we expect
the eigenvectors associated with different mechanisms to
not be orthogonal, and the smallness of the deviations
would simply be due to a moderate hierarchy in the scales
associated with each mechanism.

In conclusion, we parametrized the neutrino mixing an-
gles by small perturbations of the TBM pattern, and ex-
pressed the eigenvectors of the neutrino mass matrix (in
the flavor basis) in terms of a dominant TBM structure
with small perturbations. To very good approximation
the TBM deviations are simple eigenvectors depending
linearly in the deviations of the mixing angles. This ap-
proach was used first to clarify which neutrino mass ma-
trix elements are associated with the deviations of each
angle. We then applied the same approach to “hybrid”
neutrino mass matrices, where it conveniently describes
how the eigenvectors from different sources of neutrino
masses combine into the observed mixing. We identified
some particularly appealing cases, starting with the min-
imal ones where a small number of parameters makes the
scheme predictive and then considering cases where one
of the sources had a mass matrix with the exact TBM
form. We argued that given the data, the latter are ex-
tremely natural, and claim that neutrino mixing data
might therefore be the first hint of the presence of several
mechanisms generating neutrino masses in nature. Such
a framework is a novel perspective for neutrino mixing
which deserves further theoretical and phenomenological
scrutiny.
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