data analysis; oceanography; variational analysis; DIVA; SeaDataNet
Abstract :
[en] We present new approximate methods to provide error fields for the spatial analysis tool Diva. It is first shown how to replace the costly analysis of a large number of covariance functions by a single analysis for quick error computations. Then another method is presented where the error is only calculated in a small number of locations and from there the spatial error field itself interpolated by the analysis tool. The efficiency of the methods is illustrated on simple schematic test cases and a real application in the Mediterranean Sea. These examples show that with these methods one has the possibility for quick masking of regions void of sufficient data and the production of "exact" error fields at reasonable cost. The error-calculation methods can also be generalized for use with other analysis methods such as 3D-Var and are therefore potentially interesting for other implementations.
Research Center/Unit :
GHER
Disciplines :
Earth sciences & physical geography
Author, co-author :
Beckers, Jean-Marie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Alvera Azcarate, Aïda ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Language :
English
Title :
Approximate and Efficient Methods to Assess Error Fields in Spatial Gridding with Data Interpolating Variational Analysis (DIVA)
Publication date :
February 2014
Journal title :
Journal of Atmospheric and Oceanic Technology
ISSN :
0739-0572
eISSN :
1520-0426
Publisher :
American Meteorological Society, Boston, United States - Massachusetts
FP7 - 283607 - SEADATANET II - SeaDataNet II: Pan-European infrastructure for ocean and marine data management
Name of the research project :
SeaDataNet II, Sangoma, EMODNET Chemistry 2, SANGOMA
Funders :
UE - Union Européenne DG MARE - Commission Européenne. Direction Générale des Affaires maritimes et de la Pêche F.R.S.-FNRS - Fonds de la Recherche Scientifique CE - Commission Européenne
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Barth, A., A. Alvera-Azcárate, C. Troupin, M. Ouberdous, and J.-M. Beckers, 2010: A web interface for griding arbitrarily distributed in situ data based on Data-Interpolating Variational Analysis (DIVA). Adv. Geosci., 28, 29-37, doi:10.5194/adgeo-28-29-2010.
Barth, A., J.-M. Beckers, C. Troupin, A. Alvera-Azcárate, and L. Vandenbulcke, 2013: Divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci. Model Dev. Discuss., 6, 4009-4051, doi:10.5194/gmdd-6-4009-2013.
Beckers, J.-M., A. Barth, and A. Alvera-Azcárate, 2006: DINEOF reconstruction of clouded images including error maps- Application to the sea-surface temperature around Corsican Island. Ocean Sci., 2, 183-199, doi:10.5194/os-2-183-2006.
Bekas, C., E. Kokiopoulou, and Y. Saad, 2007: An estimator for the diagonal of a matrix. Appl. Numer. Math., 57, 1214-1229.
Bouttier, F., and P. Courtier, 2002: Data assimilation concepts and methods March 1999. Meteorological Training Course Lecture Series, ECMWF, 59 pp. [Available online at http://www. ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/Ass_cons.pdf.]
Brankart, J.-M., and P. Brasseur, 1996: Optimal analysis of in situ data in the western Mediterranean using statistics and crossvalidation. J. Atmos. Oceanic Technol., 13, 477-491.
Brankart, J.-M., C. Ubelmann, C.-E. Testut, E. Cosme, P. Brasseur, and J. Verron, 2009: Efficient parameterization of the observation error covariance matrix for square root or ensemble Kalman filters: Application to ocean altimetry. Mon. Wea. Rev., 137, 1908-1927.
Brasseur, P., 1994: Reconstruction de champs d'observations océanographiques par le modéle variationnel inverse: Méthodologie et applications. Ph. D. thesis, University of Liége, 262 pp.
Brasseur, P., J.-M. Beckers, J.-M. Brankart, and R. Schoenauen, 1996: Seasonal temperature and salinity fields in the Mediterranean Sea: Climatological analyses of a historical data set. Deep-Sea Res. I, 43, 159-192, doi:10.1016/0967-0637(96)00012-X.
Bretherton, F. P., R. E. Davis, and C. Fandry, 1976:Atechnique for objective analysis and design of oceanographic instruments applied toMODE-73. Deep-Sea Res., 23, 559-582, doi:10.1016/0011-7471(76)90001-2.
Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994:Astrategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367-1387, doi:10.1002/qj.49712051912.
Delhomme, J. P., 1978: Kriging in the hydrosciences. Adv. Water Resour., 1, 251-266, doi:10.1016/0309-1708(78)90039-8.
Emery, W. J., and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 654 pp.
Fischer, C., T. Montmerle, L. Berre, L. Auger, and S. E. Ştefǎnescu, 2005: An overview of the variational assimilation in the ALADIN/France numerical weather-prediction system. Quart. J. Roy. Meteor. Soc., 131, 3477-3492, doi:10.1256/qj.05.115.
Fisher, M., 2003: Background error covariance modelling. Seminar on Recent Development in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 45-63. [Available online at ftp://beryl.cerfacs.fr/pub/globc/exchanges/daget/DOCS/sem2003_fisher.pdf.]
Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.
Girard, D. A., 1998: Asymptotic comparison of (partial) crossvalidation, GCV and randomized GCV in nonparametric regression. Ann. Stat., 26, 315-334.
Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905-2919.
Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 3-15.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.
Kaplan, A., Y. Kushnir, and M. A. Cane, 2000: Reduced space optimal interpolation of historical marine sea level pressure: 1854-1992. J. Climate, 13, 2987-3002.
Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 1177-1194, doi:10.1002/qj.49711247414.
McIntosh, P. C., 1990: Oceanographic data interpolation: Objective analysis and splines. J. Geophys. Res., 95 (C8), 13 529-13 541.
Moore, A. M., H. G. Arango, G. Broquet, B. S. Powell, A. T. Weaver, and J. Zavala-Garay, 2011: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I-System overview and formulation. Prog. Oceanogr., 91, 34-49, doi:10.1016/j.pocean.2011.05.004.
Parrish, D., and J. Derber, 1992: The National Meteorological Center's spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.
Rabier, F., and P. Courtier, 1992: Four-dimensional assimilation in the presence of baroclinic instability. Quart. J. Roy. Meteor. Soc., 118, 649-672, doi:10.1002/qj.49711850604.
Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929-948.
Rixen, M., J.-M. Beckers, J.-M. Brankart, and P. Brasseur, 2000: A numerically efficient data analysis method with error map generation. OceanModell., 2, 45-60, doi:10.1016/S1463-5003(00)00009-3.
Schlitzer, R., cited 2013: Ocean data view. [Available online at http://odv.awi.de.]
Seaman, R. S., and M. Hutchinson, 1985: Comparative real data tests of some objective analysis methods by withholding observations. Aust. Meteor. Mag., 33, 37-46.
Tang, J. M., and Y. Saad, 2012: A probing method for computing the diagonal of a matrix inverse. Numer. Linear Algebra Appl., 19, 485-501.
Troupin, C., F. Machín, M. Ouberdous, D. Sirjacobs, A. Barth, and J.-M. Beckers, 2010: High-resolution climatology of the north-east Atlantic using Data-Interpolating Variational Analysis (DIVA). J. Geophys. Res., 115, C08005, doi:10.1029/2009JC005512.
Troupin, C., and Coauthors, 2012: Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (DIVA). Ocean Modell., 52-53, 90-101, doi:10.1016/j.ocemod.2012.05.002.
Wahba, G., and J. Wendelberger, 1980: Some new mathematical methods for variational objective analysis using splines and cross validation. Mon. Wea. Rev., 108, 1122-1143.
Xiang, D., and G. Wahba, 1996: A generalized approximate cross validation for smoothing splines with non-Gaussian data. Stat. Sin., 6, 675-692.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.