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ABSTRACT5

We present new approximate methods to provide error fields for the spatial analysis tool Diva. It is6

first shown how to replace the costly analysis of a large number of covariance functions by a single7

analysis for quick error computations. Then another method is presented where the error is only8

calculated in a small number of locations and from there the spatial error field itself interpolated9

by the analysis tool. The efficiency of the methods is illustrated on simple schematic test cases10

and a real application in the Mediterranean Sea. These examples show that with these methods11

one has the possibility for quick masking of regions void of sufficient data and the production of12

”exact” error fields at reasonable cost. The error-calculation methods can also be generalized for13

use with other analysis methods such as 3D-Var and are therefore potentially interesting for other14

implementations.15
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1. Introduction16

Spatial analysis of observations, also called gridding, is a common task in oceanography or17

meteorology and a series of methods and implementations exist and are widely used. The Nd data18

points of values di, i = 1, ..., Nd at location (xi, yi) are generally distributed unevenly in space.19

Furthermore the values di are affected by observational errors, including representativity errors.20

From this data set an analysis on a regular grid is often desired. It has been quickly recognized21

that it would be natural to define the best analysis as the one which has the lowest expected error.22

This definition has lead to Kriging and Optimal Interpolation (OI) methods (e.g. Gandin 1965;23

Delhomme 1978; Bretherton et al. 1976) and the Kalman-Bucy filter and data assimilation with24

adjoint models in the context of forcast models (e.g. Lorenc 1986).25

These methods assume that statistics on observational errors and the spatial covariance of the26

field to be analyzed are available to infer the ”best” analysis field. As these methods aim at mini-27

mizing the analysis error, it is not a surprise that they also provide the theoretical a posteriori error28

field for the analysis. The practical implementation of these methods can lead to very different29

performances, also when it is necessary to calculate the error fields (e.g. Bouttier and Courtier30

2002).31

The present paper will focus on a computationally efficient way to provide error fields for a32

gridding tool called Diva (Data Interpolating Variational Analysis) whose full description can be33

found elsewhere (Brasseur 1994; Brasseur et al. 1996; Troupin et al. 2012) and is not repeated34

here. Looking at Diva gridding is not restrictive as we can later exploit relationships with other35

formulations to allow for generalizations. In Diva, the gridded field ϕ over the two-dimensional36

domain D is searched as the field which minimizes J defined by37

J [ϕ] =

Nd∑
i=1

µi [di − ϕ(xi, yi)]
2 + ‖ϕ‖2 (1)

where weights µi control how the analysis has to be close to the data di and where the norm ‖ϕ‖38

measuring spatial irregularity is defined39

‖ϕ‖ =

∫
D

(α2∇∇ϕ : ∇∇ϕ+ α1∇ϕ ·∇ϕ+ α0ϕ
2) dD (2)
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This term enforces the solution to be more or less regular via the use of the gradient operator40

∇ = (∂/∂x, ∂/∂y). Coefficients α2, α1 and α0 control to which extend curvature, gradients and41

amplitudes of the fields are penalized1. The term penalizing the amplitude of solution ensures that42

in regions far away of data the analyzed anomalies tend to zero which avoids the extrapolation43

problems one would otherwise encounter (e.g. Seaman and Hutchinson 1985). The parameters44

of the formulation which can be translated into a correlation length scale and a signal to noise45

ratio (e.g. Brasseur et al. 1996), can be calibrated by cross-validation techniques such described46

in Wahba and Wendelberger (1980). The order two of the highest derivations in the regularization47

term remain however fixed as the other parameters allow for sufficient freedom.48

This formulation is discretized on a finite-element mesh covering the domain with triangles.49

Each of the triangles is in fact subdivided in three sub-triangles on each of which the solution50

is expanded as a cubic polynomial. This rich function allow a sufficient degree of continuity so51

that the functional is well defined. The unknowns are then the coefficients of the polynomials, or52

in the finite-element vocabulary, the connectors. The functional is a quadratic function of these53

connectors and the minimization leads to a linear system to be solved for these connectors. In54

the present implementation this solution is done by a direct skyline solver exploiting the banded55

structure of the matrix to invert. For larger problems the recent Diva version also allows in iterative56

solution of this sparse linear system with a preconditioning.57

Because of the finite-element grid covering only the real domain of interest D, disconnections,58

barriers, islands etc are naturally taken into account (e.g. Troupin et al. 2010). The solution can be59

shown to be equivalent to an optimal interpolation (e.g. McIntosh 1990; Barth et al. 2013) and to60

the solution of another minimization problem where the function to be minimized is defined as61

2J(x) = (x− xb)
TB-1(x− xb) + (Hx− d)TR-1(Hx− d) (3)

where x is a column array storing the analyzed field on each grid point where the analysis is needed,62

d is an array containing the observations and H is a linear observation operator which extracts the63

gridded solution at the data locations, so that d−Hx measures the misfit between the observations64

1a · a stands for the standard scalar product
∑

i aiai of vectors and A : A for its generalization
∑

i,j AijAij
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and the field x. B is the covariance matrix of the background field xb and R is a covariance matrix65

holding the observational error covariances. The equivalence with Diva is ensured if R is diagonal,66

B is using the so-called kernel of the norm (2) as covariance function. The kernel is in fact nothing67

else than the correlation function one would use to create B yielding the same result in OI as68

with the variational approach (e.g. Wahba and Wendelberger 1980). Furthermore for an equivalent69

result the weights µj are scaled by the inverse of the signal-to-noise ratio defined by matrices B70

and R (Barth et al. 2013). The minimization formulation (3) is a special case of the so-called 3D-71

Var method (e.g. Fischer et al. 2005) with a linear observation operator. For simplicity we keep the72

name 3D-Var even if we use the equivalence with Diva in a 2D framework. The solution which73

minimizes the 3D-Var functional (3) is itself equivalent to the OI analysis step (e.g. Kalnay 2003):74

x− xb = K (d−Hxb) (4)

with the Kalman gain matrix K defined by75

K = BHT
(
HBHT + R

)-1
. (5)

The choice of the background field xb depends on the application: for operational forecasts it is the76

modeled forecast, for oceanic cruise mapping it can be a climatological field, for the computation77

of climatologies it can be a constant reference value etc. For the simplicity of the presentation, we78

assume from here on that we work with anomalies with respect to this background field (x− xb is79

replaced by x and d−Hxb replaced by d).80

The analysis-error covariance P then reads with different equivalent formulations (e.g. Rabier81

and Courtier 1992; Courtier et al. 1994; Bouttier and Courtier 2002)82

P =
(
B-1 + HTR-1H

)-1
= B−KHB. (6)

As easily seen, this matrix is also the inverse of the Hessian2 matrix of J in (3). The diagonal terms83

of the error covariance matrix provide the error variance of the analysis on the grid defined by x.84

This error variance in each point is the quantity we will focus on later.85

2Derivatives are with respect to coordinates x.
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From (6), between the data locations, the error covariance Pd of the analysis reads, expressed86

in terms of the background covariance matrix between data locations Bd = HBHT
87

Pd = HPHT = HBHT −HKHBHT

= Bd − Bd(Bd + R)-1Bd = Bd(Bd + R)-1R. (7)

In Diva or 3D-Var, matrices K and B are actually never formed but the application of K to a88

vector can be seen as the application of the analysis tool to a data set stored in this vector. Similarly89

HK applied to a vector consists of applying the tool to the data and then retrieving the analysis at90

the data locations.91

For the linear observation operators used here, Diva, 3D-Var and OI provide the same results92

(under the hypotheses mentioned above), but the computational aspects are quite different, in par-93

ticular when it comes to the error calculations.94

For 3D-Var implementations, the calculation of the a posteriori error covariance requires the95

computation of the inverse Hessian matrix whereas the analysis itself only uses gradient calcula-96

tions (e.g. Rabier and Courtier 1992). To some extent, the need to calculate the full Hessian matrix97

can be circumvented by the use of Lanczos vectors of the conjugate gradient approach (e.g. Moore98

et al. 2011, in the context of 4D-Var). In this case the need of more Lanczos vectors required to99

provide an accurate estimate of the Hessian matrix defeats however the purpose of the conjugate100

gradient approach to use as few iterations as possible. More recently, with approaches specifying101

the background covariance matrices by an ensemble (e.g. Hamill and Snyder 2000), error calcula-102

tions can use the equivalence with OI to exploit the reduced rank of the covariance matrix.103

For OI, in each point where the analysis is needed, an analysis of the covariance is requested104

for the a posteriori error calculation. This can lead to very high computational costs unless reduced105

rank approaches are possible (e.g. Kaplan et al. 2000; Beckers et al. 2006) or localization is used106

(e.g. Reynolds and Smith 1994). In the latter case, the error field can be calculated at the same107

time as the local analysis almost without additional cost. It also has the advantage to allow a108

highly parallel approach.109
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For Diva, several problems exist: a) neither covariance functions nor background matrices110

are explicitly formulated so that error calculations have been only made possible by exploiting111

the equivalence with OI and the discovery of a quick method to numerically calculate on the fly112

covariance functions (Troupin et al. 2012); b) the computational burden is still high as an analysis113

in each of the N points where the error is requested must be performed; c) localization could114

only be exploited at the inversion step of the finite-element formulation by exploiting the banded115

structure of the matrix to calculate the value of a connector. This has not been implemented as it116

would lead to suboptimal solutions and in any case would not allow the error calculation in parallel117

with the analysis (such as in OI implementations), as the error field is not formulated in terms of118

connectors.119

So several methods are faced with high computational costs to retrieve error fields. Because120

generally covariances are estimated from data (e.g. Emery and Thomson 2001) and are not per-121

fectly specified, we expect that error fields derived from the theoretical models are not ”true” error122

fields in any case. Therefore it can be considered an overkill in computations trying to calculate123

errors with the full theoretical formulation in all locations and some relaxation can be accepted.124

The present paper will present in Section 2 two ”error calculations” which to various degrees125

mimic the ”exact” error field but with reduced cost. The method will be illustrated in Section 3126

with the 2D version of Diva, but generalizations to the other cases mentioned in the introduction127

will be discussed in Section 4.128

2. Approximations for error analysis at reduced costs129

The direct formulations for error covariances are rarely applied because matrices are too large130

and/or covariance matrices not explicitly formulated. Alternative ways to get information on the131

analysis error are desirable.132

If we are only interested in the trace of P, providing a global error estimate, randomized es-133

timates (e.g. Girard 1998) apply the analysis tool to random vectors and provide trace estimates134
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(e.g. Troupin et al. 2013). These methods converge quite easily and are used in cross validation135

techniques (e.g. Xiang and Wahba 1996). The estimation of each individual term on the diagonal136

is however more challenging and convergence much slower. It is possible to use particular struc-137

tures in the random vectors (e.g. Bekas et al. 2007), but convergence turns out to be still rather138

slow for our case, needing therefore a number of analyses of random vectors to be performed not139

significantly lower than N , the number of diagonal terms to be evaluated. Here we will exploit the140

idea of applying the analysis tool not to randomly chosen ”data vectors” but to well designed ones.141

This has been implemented to probe the diagonal (Tang and Saad 2012), but here we will try to142

capture only some of the diagonal terms and then guessing the other terms by spatial coherence.143

Instead of trying to calculate the error covariance we can of course also rather focus on the error144

reduction term ∆ defined from (6) by P = B−∆ :145

∆ = BHT
(
HBHT + R

)-1︸ ︷︷ ︸
K

HB. (8)

This formulation shows that if we have a tool to analyze a data array (the under-braced terms146

are the formal equivalent of the tool), it is sufficient to analyze covariances (columns of HB)147

to get the error field, but for each point in which the error is requested another covariance must148

be analyzed. For Diva, the main challenge in the past was the fact that covariances are never149

explicitly formulated, yet needed for the error computation. In first Diva versions (e.g. Rixen et al.150

2000), this problem was circumvented by using as approximate covariance function an analytical151

solution for the minimum of (1) applied in an infinite isotropic domain (a method called hybrid152

in the following and used in Brankart and Brasseur. (1996); Troupin et al. (2012)). Recently it153

has been shown Troupin et al. (2012) how to use the Diva tool itself to numerically calculate the154

covariances in an optimized way (a method called real covariance in the following). Now we will155

aim at downgrading this method to make it more economical.156
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a. Clever poor man’s error157

If we replace covariances to be analyzed with a vector with all elements being a constant158

background variance, we generally overestimate the error reduction but we have a computational159

huge gain, because the same analysis is valid for ALL of theN points in which we want to calculate160

the error. Instead of N backward substitutions or iterative solutions, we only need one additional161

analysis to add an ”error field” to the analysis. This was already implemented (Troupin et al. 2010)162

and was called poor man’s error. In reality we can do better for a similar cost by looking at the163

situation of an isolated data point and focus on the error reduction (8).164

With a single data of anomaly value d and isotropic covariances, the analysis xa at a distance r165

from the data location reads according to (4)166

xa(r) =
σ2

σ2 + ε2
c(r/L) d (9)

where c(r/L) is the correlation function of the background field (the kernel of the Divafunctional),167

ε2 the observational noise and σ2 the variance of the background field, defining the so-called signal-168

to-noise ratio σ2/ε2. The error reduction term (8), scaled by the background variance reads169

∆(r)

σ2
=

σ2

σ2 + ε2
c2(r/L). (10)

We see that when applying the idea of the poor man’s error (putting d = 1 into the analysis)170

analysis (9) yields some resemblance with the actual non-dimensional error reduction (10), but171

overestimates the error reduction since it uses c instead of c2.172

To go further, we can notice that for the often used Gaussian correlation c = exp(−r2/L2),173

we have c2(r/L) = c(
√
2r/L). In other words, in this case we can obtain the exact error reduction174

by applying the poor man’s error approach with a length scale divided by
√

2. For more general175

correlation functions, obviously it is rare to find a new length scale L′ such that c(r/L′) = c2(r/L),176

but one can try to optimize the value so that the functions are close to each other in a root mean177

square sense in a 2D domain:178

min
L′

∫ ∞

0

[
c(r/L′) − c2(r/L)

]2
r dr. (11)
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This minimization can be done easily when the covariance function is known. For Diva, the179

covariance function in an infinite 2D domain can be expressed in terms of the modified Bessel180

function K1 as (Brasseur 1994):181

c(r/L) =
r

L
K1( r

L) (12)

and the optimal value of L′ is182

L′ =
L

1.70677
. (13)

The quality of the approximation can be seen on Figure 1.183

If we have several data points separated by distances much larger than the correlation length184

scale, the presence of other data points does not influence the analysis and error field around a data185

point and hence the poor man’s error calculation replacing all data values by one and changing the186

correlation length scale will provide, with a single analysis, the error reduction term on the full187

grid.188

For regions with higher data coverage, obviously the method provides a too optimistic view of189

the error, but the method can be easily used to mask gridded regions far away from the data (see190

error on mask on a 101×101 grid on Figure 2)191

The recipe for the method, which we call clever poor man’s error is thus straightforward:192

adapt the correlation length scale and then apply the analysis tool to a data vector with unit values193

to retrieve the complete error reduction field in a single analysis step.194

b. Almost exact error fields195

For a diagonal observational error covariance matrix, the error at data location i is easily refor-196

mulated from (7) as:197

ei
TPd ei = Riiei

TBd(Bd + R)-1ei (14)
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where ei is a vector with zeros everywhere except 1 on element i. This makes appear an interesting198

parameter:199

Aii = ei
TBd(Bd + R)-1ei = ei

TH BHT
(
HBHT + R

)-1︸ ︷︷ ︸
K

ei (15)

If we know the value of Aii then the error is readily available at the data location as RiiAii. As200

before, the calculation of Aii is suggested by the formulation read from right to left: It is sufficient201

to apply the analysis tool (K) to a data vector with zeros everywhere and 1 at location i (vector ei)202

and then taking the value of the analysis at location i (operator ei
TH).203

There is in fact another reason to calculate Aii: it provides a way for data quality check. Indeed204

(e.g. Bretherton et al. 1976; Troupin et al. 2013), the expected misfit between observation and205

analysis E [d−HKd] has the following variance206

E
[
(d−HKd) (d−HKd)T

]
= R (I−HK) . (16)

This variance can be exploited to check whether the actual analysis-data difference is significantly207

different from the expected difference, which then allows one to flag data as suspect. At data208

location i with diagonal observational error the data-analysis misfit according to (16) should have209

the following variance s2i210

s2i = Rii(1− Aii) (17)

so that comparing the actual analysis data misfit to the expected one, suspect data can be identified.211

For this use and also because Aii in needed in cross-validation techniques (e.g. Wahba and212

Wendelberger 1980; Brankart and Brasseur. 1996), the calculation of Aii (via an analysis of a data213

vector with zeros everywhere except at data point i) has been optimized for Diva and is accessible214

at reasonable cost (Troupin et al. 2013). This means we can calculate the error estimates at data215

locations, which leaves only one problem: how to calculate the error in other locations ?216

An easy way to achieve this is to add a pseudo-data point with a virtual huge observational217

error for any location where the error has to be calculated. For Diva, this high observational error218

translates into a very small data weight µi (1), which numerically does not cause any problem in219
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the data analysis step. It is then easy to calculate the error at any location. However this would still220

be costly if done everywhere, as Aii needs to be calculated in this pseudo-data location without the221

benefit in terms of outliers detection or cross validation (as we know that the data are not real).222

We should therefore limit the number of additional pseudo-data points and still be able to calculate223

the error everywhere. In fact we can consider this again as a gridding problem: knowing the error224

”exactly” at a series of points, what is the value of the error field in other locations? We can225

thus use the gridding tool itself where the ”observations” are the calculated errors and where the226

”observational” error is zero and hence the signal-to-noise ratio is infinity (or just very large in the227

numerical code). There remains to specify the correlation length scale for gridding the error field,228

but as shown in the analysis of the clever poor man’s error, a good choice is the adapted length229

scale L′ (13). Furthermore, it is easy to define the background field if we grid the error reduction:230

since the ”data” locations are the places where we have the error exactly, in other locations we do231

not have data and the background error reduction is simply zero. Finally, because of the influence232

of ”data” over a correlation length distance, it seems reasonable to add randomly α2D/L2 pseudo233

data over the surface D where α ∼ 1 defines the precision with which we want the error field.234

For completeness, a discussion on the background covariance is needed. Up to now we have235

scaled the error reduction by σ2, the overall background variance. However, with Diva, the back-236

ground covariance varies spatially and increases near boundaries because of the variational for-237

mulation (Troupin et al. 2012). So the local background variance in location (x, y) has a value238

of σ2B̂(x, y) where B̂(x, y) is now a non-dimensional local background covariance. Sometimes239

it is interesting to present the relative errors in which case a scaling by this local background co-240

variance is necessary. The calculation of local background variances can be done at some cost241

with the covariance module (Troupin et al. 2012) of Diva, but only applied in the data points in242

this case. So one has the choice to scale or not with this non-dimensional background field and243

the unscaled error field is referred to as with boundary effect or bnd. With the boundary effect,244

because of the less uniform behavior of the error field near the boundaries (see examples later),245

we generate a series of pseudo-data in each finite-element mesh forming the boundary (we can246
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add more points compared to the scaled error field because we do not need to calculate the local247

background variance in the unscaled version).248

A final comment concerns the number of data and the cost to calculate Aii for each data point:249

generally the number of data points is much lower than the number of grid points so that the250

computational burden to calculate these coefficients remains reasonable compared to the burden of251

a full error calculation. Should there be a very large number of observations, there is no problem252

to restrict the error calculation to a subset of the data points as together with the pseudo data points253

a nice coverage of the grid is easily achieved.254

3. Test cases255

To diagnose the quality of the error estimates, we will provide three indicators: a graphical256

representation and two numbers. The first metric is simply the relative error on the error field (root257

mean square of the difference in error variances between the true error field and the approximate258

one compared to the true error variance). The second one tries to check how well the error field259

can be used to mask regions with insufficient data coverage. Typically, when the error variance260

of the analysis is larger than 50% of the background variance, it means the data did not provide261

a significant amount of information and the analysis could be masked. Then we can compare the262

masks derived from the exact error and the approximate one and see how many grid points do not263

have the same mask.264

a. A single data point265

This case simply serves to check that the analysis we showed is valid and to see how the266

different methods compare in the situation with a single data point in the center of the domain with267

a unit signal-to-noise ratio and a unit background variance. In this case, the error variance at the268

origin is 0.5 and the standard deviation shown in Figure 2 is 0.707. The number of grid points for269

the gridded field is 101×101 to which we can compare the number of mask misses.270
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For all errors without taking into account the boundary effects, the visual inspection shows that271

the hybrid, clever poor man’s error and almost exact error approach are indistinguishable from the272

exact solution. Only the poor man’s error is significantly different, as expected. Quantitatively the273

relative errors on the error fields are less than a percent and no mask errors occur, except again for274

the poor man’s error. The hybrid error estimate is very close to the exact one using real covariances.275

The slight difference is due to the fact that the analytical covariance function (12) is the one of an276

infinite domain, whereas the computation domain used here is finite. When boundary effects are277

taken into account, we observe the highest errors near the boundary (see Troupin et al. (2012)278

for details and explanations). But again, the approximate fields are of excellent quality though279

with higher rms error because of the stronger spatial variability of the error field. To capture this280

variability better, we can increase the number of pseudo data by increasing α. Indeed with a281

value of α = 3 (Figure 3) the quality increases, whereas decreasing the value of α provides still282

acceptable results and the error mask is still excellent in this case.283

The computational time is not yet shown here as a single data point is rarely encountered in284

practice and the CPU time of the present case is similar to the one of Section c (see Table 1).285

b. Aligned data points286

A slightly more complicated situation is one where ten points are aligned in y = 0 for x ≥ 0287

as shown on Figure 4.288

The poor man’s error is now clearly too optimistic, also at the data locations, because it over-289

estimates the error reduction at each data point due to the other data points. The clever poor man’s290

estimate clearly reduces the problem but the hybrid and almost exact error outperform it. We also291

see that the hybrid method degrades near data points close to the boundary, as to be expected.292
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c. Points in part of the domain only293

The same conclusions as in the previous case hold if we now place 150 data points in the upper294

right part of the domain (Figure 5). The clever poor man’s error improves the results from the295

poor man’s error, but the hybrid and almost exact error perform better, with the best approximate296

method again the almost exact error version. For boundary effects, capturing the error field near297

the boundary is more problematic but the error field and mask are still of quality.298

Up to now we only compared the quality of the fields but we can also compare the computa-299

tional load. As seen in Table 1, the most expensive methods are those calculating the exact field300

(with scaled or unscaled background variances). The hybrid method consumes less time because it301

does not need the calculation of a covariance function by another Diva calculation but can use an302

analytical function instead. However, compared to the cost of the almost exact error version, the303

hybrid method is one order of magnitude more expensive, yet the almost exact error calculation304

provides error estimates of similar or better quality. Finally, the poor man’s error calculations are305

clearly the fastest and therefore interesting for exploratory work.306

d. Realistic test case307

We finally test the methods with the same data set as the one used in Troupin et al. (2012) so308

that we can use the same statistical parameters and do not need to recalibrate the analysis. We309

use salinity measurements in the Mediterranean Sea at a depth of 30 m in July, for the 1980-1990310

period and reconstruct the solution on a high resolution output grid with 500×250 grid points.311

The analysis itself (Figure 6) shows the well known features such as the inflow of Atlantic312

waters in Gibraltar, the anticyclonic gyres in the Alboran Sea, the spreading of the Atlantic Waters313

off the North African coast, the high salinities of the eastern Levantine basin, a signature of Black314

Sea waters in the Aegean sea and the high salinity in the Northern part of the Western Mediter-315

ranean. Also the influence of the Po river in the Northern Adriatic is visible. This analysis itself316

is calculated within a few seconds and we focus now on the computationally more expensive error317
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fields.318

The error fields are scaled by the global background variance and white crosses indicate real319

data locations and black dots pseudo-data locations. The real error field (upper panel of Figure 7)320

shows the effect of low data coverage in the southern parts and the lower errors near data locations.321

As before, the poor man’s error is quite optimistic and quantitatively not reliable. The mask derived322

from the poor man’s error with only 43 incorrectly masked points has some skills, but the clever323

poor man’s error provides more acceptable quantitative results and masks. In particular, the regions324

void of data in the Southern part and around Sardaigna are now captured. The hybrid method and325

almost exact approach (Figure 8) have similar metrics, but if we look at the details, the ”almost326

exact” error field clearly better resolves features such as the higher error fields around Sardinia327

and in the eastern Thyrrenian Sea. Also the error structure in the Alboran Sea is better recovered,328

despite the very low number of pseudo-data (black dots) used.329

For the error fields with boundary effects (Figure 9), using the high pseudo-data coverage330

along the coast makes it possible to capture the variable background variance, but because of the331

fine mesh along the coast, probably too many pseudo-data have been added there. This results in332

excellent metrics, with only four incorrectly masked points and only one percent error on the error333

field. The relatively large number of pseudo-data is then reflected also in the CPU time. But even334

with this coverage, the computational gain of a factor 11 compared to the exact calculation is still335

significant. Comparing CPU times in this realistic case shows without doubt the usefulness of the336

new approaches (Table 1) which have been included in the Diva tool http://modb.oce.ulg.337

ac.be/mediawiki/index.php/DIVA. Indeed climatology productions generally requires338

gridding at several levels, month or seasons for several parameters so that already in the 2D case339

the computational efficiency matters. When it comes to generalizations of our methods to 3D-Var340

or OI in several dimensions, then the expected gain might be even more interesting as we will show341

now.342

Here we presented some particular test cases and one may wonder how the computational343

efficiency behaves in other situations, in particular we want to know the computational gain we can344

15



expect for the almost exact error calculation compared to the exact one based on real covariances.345

In the latter case, for each grid point we need to perform an analysis. For a n-dimensional domain3
346

of size D and grid spacing ∆, the number of analysis for the exact error calculation is therefore347

D/∆n. For the almost exact error calculation we cover the domain with random points in which348

we need to make an analysis. This leads to D/Ln required analyses, to which we have to add the349

analyses needed at the Nd data locations. We evaluate this number as εNd with ε = 1 if we need to350

calculate Aii in all data points and ε < 1 if we use only a fraction ε of the observations to calculate351

the error exactly. We note that ε = 0 when a quality check approach using (17) already provided352

the values of Aii. The gain G we obtain then writes353

G =
D/∆n

D/Ln + εNd

=
1

1 + εNd

N

(
L

∆

)n

(18)

where N = D/Ln is a measure of the degrees of freedom of the background field.354

Normally the numerical grids have a grid spacing which is much smaller than the physical355

length scales and the last term is therefore in favor of a very high efficiency. If we work with a356

forecast model, its numerical grid is typically recommended to be 8 times smaller than the scales357

of interest. With only a few data points we then reach gains of one to two order of magnitudes in358

2D and almost three order of magnitudes in 3D. The gain decreases if the number of observations359

is high and allows to capture the degrees of freedom of the system. If the number of observations360

is much larger than N it is then advised to use a fraction ε ∼ N /Nd to retain efficiency and still361

capture the error field.362

4. Generalizations363

We have presented our ideas in the framework of Diva with a diagonal observational error364

covariance matrix and will now analyze how the methods can be applied in other frameworks.365

A first problem which can be encountered is therefore a non-diagonal observational error co-366

variance matrix R. The clever poor man’s error was designed by looking at an isolated data point367

3We can assume that with a suitable change of variable the different dimensions have been made comparable.
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and it was shown reliable in regions with isolated data and at sufficient distance from data clusters.368

In all these locations it does not matter whether R is diagonal or not and therefore the clever poor369

man’s error should perform similarly in these regions. The application of the clever poor man’s370

error by any analysis tool (be it OI, 3D-Var or Diva) technically also does not depend on whether371

or not R is diagonal since it just demands the application of the analysis tool to a special data372

vector.373

For the almost exact error, we notice that at data locations (7) still holds for non-diagonal R374

and that the value of the error at data location i reads375

ei
TPd ei = ei

TH BHT
(
HBHT + R

)-1︸ ︷︷ ︸
K

Rei. (19)

This can be read again from right to left to design the recipe for calculating the errors at the376

data locations: Extract column i of the observational error covariance matrix (or in other words, fill377

a vector with observational error covariances with respect to point i), apply your analysis tool (K)378

and extract the solution at your data point i (observation operator ei
TH). If the tool does not rely379

on R but on its inverse, an inversion is needed first, but as observational error covariance matrices380

are generally block diagonal with narrow bands, this is a feasible operation. Alternatively one can381

calculate the error reduction term at location i382

ei
T∆ ei = ei

TH BHT
(
HBHT + R

)-1︸ ︷︷ ︸
K

Bdei (20)

if it is easier to work with the background covariance matrix at the data points. We note that to383

apply (19), we actually do not even have to know how exactly the background error covariance is384

expressed, all we have to use is the analysis tool K applied to a series of ”data”. One can therefore385

assess the exact error in a series of points and for the final gridding of the error, the tool can be used386

again, here even without the need to maintain the correlated observational error since the ”field” to387

be gridded has no observational error anymore.388

The presence of a non-diagonal R therefore still allows the application of the new methods by389

any analysis tool.390
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Another problem which can be encountered with other tools than Diva, is to find a way to391

adapt the correlation length during the clever poor man’s error calculation or the final gridding392

step of the almost exact error approach. If the methods use a length scale in their formulation, then393

it should simply be adapted according to (11) for the specific correlation function of the method,394

so that the correlation function with the new scale mimics the squared correlation function. If395

the method uses an explicitly formulated correlation function which can be changed by the user,396

then it is suggested to replace the correlation function by its square. This is even simpler and397

further should improve the quality of the error field. This interpretation also paves the way for398

situations in which the background error covariance matrix is specified by numerical correlations.399

During the clever poor man’s error calculation or the final gridding step of the almost exact error400

approach one simply needs to use the squares of the correlations. In other cases, the background401

covariance can be formulated by recursive filters (e.g. Hayden and Purser 1995). Since these filters402

contain parameters determining the filter width, one can adapt the filter parameters to change403

the correlation length scales. Some other models work in spectral space and the analysis is also404

performed in spectral case. In these situations, the spectral representations of covariance functions405

have a specific signature of the correlation scales. Tampering with the spectrum can therefore406

be used to change the scales of the underlying covariance function: For example: a Gaussian407

correlation function in n dimensions which only depends on distance r408

c(r) = exp (−r2/L2) (21)

has a spectral density a(k) in wave number space k given by409

a(k) = (πL2)n/2 exp (−π2L2k2). (22)

To divide the length scale L by a factor
√

2 in two dimensions, it is therefore sufficient to change410

amplitudes a(k) according to411

a(k)← a(0)

2

√
a(k)

a(0)
. (23)

This shows that in order to reduce the correlation length scale, amplitudes of the higher modes412

get more importance. For spectral models on spheres, the coefficients of the spherical harmonics413
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also define an underlying correlation function and can be modified to change the correlation length414

scale.415

Still other background covariance specifications rely on projections on empirical orthogonal416

functions (EOFs). Such EOFs decompositions are to some extend similar to a spectral decompo-417

sitions, but the base functions are calculated from the data instead of being defined by analytical418

functions given a priori. The equivalent of the spectral density such as (22) is captured in the sin-419

gular values of the SVD decomposition leading to the EOFs. These coefficients or singular values420

can therefore be tampered with when a change in correlation length scale is to be obtained.421

There are thus several possibilities to change the correlation function of the analysis tool so that422

it can be optimized to mimic its own square. In complicated implementations the approach should423

of course be tested, and possibly calibrated, by looking at a covariance function generated by an424

analysis with a single data point and comparing it to the one obtained when using the tampered425

version. One should retrieve a correlation function for the tampered version which is close to the426

square of the original one.427

We see that there are many ways to adapt the length scale or correlations for the clever poor428

man’ error calculation and the final gridding step of the almost exact error approach. Should429

this adaptation be difficult or not efficient, the almost exact error approach can still be applied by430

covering the domain with more pseudo data and making the final gridding step using the original431

covariances or a simpler gridding tool. Indeed, the error is already calculated exactly with a fine432

resolution so that ANY gridding method, even with a poorly specified correlation structure, when433

applied to these exact values of the error, should work fine. This is however then at the expense of434

more analyses to get the exact error in more locations.435

To illustrate these ideas on an example, we can look at a typical 3D-Var approach used in436

operational mode, using the so-called NMC method (e.g. Parrish and Derber 1992; Fisher 2003),437

presented here assuming we are still working with anomalies with respect to the background field.438

It starts with a definition of a change of variables, with439

x = Uv, B = UUT (24)
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so that (3) becomes,440

2J(v) = vTv + (HUv − d)TR-1(HUv − d). (25)

This can be interpreted as a change of variables in which the new state vector v has uncorrelated441

background errors. The minimization of (25) is then nicely conditioned if the observational error is442

large, since the quadratic function is then dominated by the background contribution which is now443

isotropic and leading to good convergence. The fact that the solution is done via a new variable444

v is not essential for our purpose, because after the minimization, the solution x = Uv is still the445

minimum of (25) and hence defines the analysis tool K exactly as before. Also the presence of a446

non-diagonal R causes no problem as shown earlier.447

Therefore the only problem we have to deal with is the problem of the correlation length scales448

or correlation functions which need to be adapted. To do so, we now have to look at how U is449

designed. Written as450

v = U-1x (26)

we see that U-1 is supposed to transform the original state vector into one in which the background451

errors are uncorrelated. This supposes as a first step that physical balances are used to eliminate452

some variables as a function of others to avoid keeping the associated correlation. Formally U-1
p x453

provides this state vector in which balances have been taken into account. At this step we do454

not need an adaptation for our methods. From there, the variables are scaled by the local standard455

deviation of the background field. For spectral methods this requires a transformation to real space,456

division by the local standard deviation and a transformation back to spectral space, formally by457

applying Σ-1. For a grid method, the operation simply divides by the local standard deviation. Here458

again our methods do not introduce any change. Then the horizontal and vertical correlations need459

to be taken into account by successively trying to take out correlations in the horizontal (formally460

operation U-1
h ) and the vertical directions (operation U-1

v ). This will involve the correlations which461

we will have to tamper with. The operations read now462

v = U-1
v U-1

h Σ-1U-1
p x (27)
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which defines U = UpΣUhUv and finally B = UpΣUhUvUT
v UT

hΣTUT
p . Obviously, in practice463

B is never formed but the succession of operations described above are applied to the state vector464

x, then the minimization is performed on v and finally the optimal x retrieved by the inverse465

operations in reverse order:466

x = UpΣUhUvv. (28)

There remains to see how to adapt Uh and Uv to accommodate changes in correlations. When467

the model works in spectral space, it is generally assumed that the modes are independent and468

matrix Uh is diagonal. The spectral coefficients found on the diagonal of Uh define in this case469

the underlying horizontal correlation function in physical space and by changing their values we470

can change the correlation function as shown in example (23). If the model works in grid space,471

then Uh can be specified by recursive filters or covariance functions, which can also be changed472

to meet our requirements. Finally on the vertical, UvUT
v is in fact a vertical correlation matrix.473

It is generally considered a block diagonal matrix (one block for each variable and each spectral474

mode or spatial grid point) and is composed therefore by a series of small Nz × Nz correlation475

matrices, where Nz is the number of vertical levels. These individual matrices must be adapted in476

our case to change the correlation functions. This can be done by taking for example the square477

of the correlations. If the matrices are already decomposed by a singular value decomposition to478

work with EOFs, as stated above, one can tamper the singular values to change the correlations.479

It is now clear that the adaptations to change the correlations are quite localized and therefore480

it should be possible to implement the poor man’s error and the almost exact error calculations in481

operational 3D-Var implementations. We can finally note that in the NMC version, the parameters482

involved in U are fitted by assuming that statistics on differences in forecasts for the same moment483

but of different length (24h and 48h) are a good proxy for background errors. This calibration does484

not affect the possibility to readjust later the correlation during the poor man’s error calculation or485

the final gridding of the almost exact error.486
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5. Conclusion487

The preparation of error fields is generally much more expensive than the preparation of an488

analysis. We proposed two new ideas to provide some practical and economic ways to provide489

such error fields. The first method only needs a second analysis with modified correlation length490

scale and is particularly well suited for exploratory analysis or masking of gridded fields in regions491

insufficiently covered by data (such as done in the web version (Barth et al. 2010) or within ODV492

(Schlitzer 2013). The second method on the other hand can be used for cases in which sufficient493

confidence in the covariance matrices justifies the use of the full error calculation. In this case, the494

new method we presented drastically reduces the computational burden without sacrifying on the495

quality of the error field. The method is particularly useful when employed in parallel with outliers496

detection methods and cross validation as the same computations can be reused.497

We illustrated the approach using the specific analysis tool Diva, but also paved the way for498

generalizations for a variety of situations when background covariances are formulated differently499

or when the observational error covariance matrix is non-diagonal. The ideas presented here can500

therefore be implemented in various versions of analysis tools.501

In particular we detailed how both methods can be adapted to 3D-Var approaches used in op-502

erational systems. They could then provide an alternative to the Lanczos-vector based estimates503

of the Hessian matrix. The new approach is particularly interesting if the background covariance504

is factorized or a very efficient preconditioning was applied so that the calculation of several min-505

imizations to get error estimates in selected locations can be tackled.506

Concerning future work in the context of Diva, in the present paper we limited ourselves to the507

implementation of the case of uncorrelated observational error, i.e. a diagonal R. Dealing with non508

diagonal R is already more problematic with Diva for the analysis itself. When data are provided509

with regular spatial patterns (such as along altimeter tracks or on satellite images), augmented data510

arrays can be used to account for correlated observational errors in methods that only deal with511

diagonal matrices for the observation error covariance (Brankart et al. 2009). This problem will512

be looked at in the future. Finally there is also some room for improvement in Diva in case one513
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is interested in the unscaled error fields showing the boundary effects by reducing the number of514

pseudo points near the boundaries if the computational load is too high and meshes very fine. The515

choice of the location of the additional pseudo data could also be further optimized when other516

constraints are used, such as the advection constraint already included in Diva.517
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List of Tables612

1 CPU time (in seconds) for the test case with 150 data points distributed randomly613

in part of the domain (schematic case) and a realistic case of the Mediterranean Sea 29614
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Method Schematic case Realistic case
Real covariance 572.4 1944.9
Poor man 3.8 6.1
Clever poor man 8.3 13.4
Hybrid 345.3 1256.6
Almost exact 37.2 81.4
Real covariance bnd 568.3 1951.9
Almost exact bnd 33.7 175.1

TABLE 1. CPU time (in seconds) for the test case with 150 data points distributed randomly in
part of the domain (schematic case) and a realistic case of the Mediterranean Sea
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List of Figures615

1 Diva correlation function (the kernel of the Diva functional) in an infinite domain616

as a function of r/L (thin line). The squared correlation function which leads to617

the exact error reduction for one data point (thick line) shows how strongly the618

poor man’s error using the thin line overestimates the error reduction. Adapting619

the correlation length scale c(r/L′) (dashed line) in the poor man’s error (called620

clever poor man’s error) shows how one can mimic the exact squared correlation621

by comparing the thick line (exact error reduction) and the dashed line (clever poor622

man’s error reduction). 32623

2 Test case with a single point in the center of the domain. The error standard de-624

viation is shown for the different methods. The upper-left panel is a section along625

y = 0. The title for each 2D plot identifies the method and includes two indicators626

of the quality of the error field. The first number is the relative error on the error627

field as a percentage, where the true field is the field real covariance when the error628

is scaled by the local background variance. For the case where boundary effects629

are taken into account the reference solutions is real covariance bnd. The second630

indicator gives the number of grid points where a mask derived from the error field631

is not the same as the exact one. White crosses indicate real data locations and632

black dots indicate pseudo-data locations. 33633

3 Error fields for a single point in center with fine sampling α = 3 of pseudo data634

(upper two plots) and coarse sampling α = 0.3 (lower two plots). White crosses635

indicate real data locations and black dots pseudo-data locations. 34636

4 Error fields for ten data points in y = 0, x ≥ 0. White crosses indicate real data637

locations and black dots pseudo-data locations. 35638
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7 Real error field, poor man’s and clever poor man’s error. 38643
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FIG. 1. Diva correlation function (the kernel of the Diva functional) in an infinite domain as
a function of r/L (thin line). The squared correlation function which leads to the exact error
reduction for one data point (thick line) shows how strongly the poor man’s error using the thin
line overestimates the error reduction. Adapting the correlation length scale c(r/L′) (dashed line) in
the poor man’s error (called clever poor man’s error) shows how one can mimic the exact squared
correlation by comparing the thick line (exact error reduction) and the dashed line (clever poor
man’s error reduction).
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FIG. 2. Test case with a single point in the center of the domain. The error standard deviation
is shown for the different methods. The upper-left panel is a section along y = 0. The title for
each 2D plot identifies the method and includes two indicators of the quality of the error field. The
first number is the relative error on the error field as a percentage, where the true field is the field
real covariance when the error is scaled by the local background variance. For the case where
boundary effects are taken into account the reference solutions is real covariance bnd. The second
indicator gives the number of grid points where a mask derived from the error field is not the same
as the exact one. White crosses indicate real data locations and black dots indicate pseudo-data
locations.
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FIG. 3. Error fields for a single point in center with fine sampling α = 3 of pseudo data (upper two
plots) and coarse sampling α = 0.3 (lower two plots). White crosses indicate real data locations
and black dots pseudo-data locations.
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FIG. 4. Error fields for ten data points in y = 0, x ≥ 0. White crosses indicate real data locations
and black dots pseudo-data locations.
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FIG. 5. Error fields for 150 random points in one quadrant. White crosses indicate real data
locations and black dots pseudo-data locations.
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FIG. 6. Analysis of salinity measurements in the Mediterranean Sea at a depth of 30 m in July, for
the 1980-1990 period.
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FIG. 7. Real error field, poor man’s and clever poor man’s error.
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FIG. 8. Hybrid and almost exact approach.
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FIG. 9. Real error with boundary effects and almost exact approach.
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