Longuespée, Rémi ; Université des Sciences et Technologies de Lille - USTL > Sciences Naturelles > Laboratoire de Spectrométrie de Masse Fondamentale et appliquée
Longuespée RB, C.; Kerdraon, O.; Vinatier, D.; Fournier, I.; Day, R.; Salzet, M. (2012). MALDI MSI and Ovarian cancer Biomarkers. Advances in Cancer Management; Ed R. Mohan, Chap. 10, 211-236.
Jelovac, D.; Armstrong, D.K. Recent progress in the diagnosis and treatment of ovarian cancer. CA: A Cancer Journal for Clinicians, 61, 183-203.
Konishi, H.; Mohseni, M.; Tamaki, A, et al. 2011. Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 17773-17778.
Saunders, K.H.; Nazareth, S.; Pressman, P.I. (2011). Case report: BRCA in the Ashkenazi population: are current testing guidelines too exclusive? Heredity Cancer Clinical Practice, 9(1), 3.
Jazaeri, A. A. (2009). Molecular profiles of hereditary epithelial ovarian cancers and their implications for the biology of this disease. Molecular Oncology, 3, 151-156.
Bast, R. C.; Jr.; Hennessy, B.; & Mills, G. B. (2009). The biology of ovarian cancer: new opportunities for translation. Nature Reviews. Cancer, 9, 415-428.
Moore, L.E.; Pfeiffer, R.M.; Zhang, Z.; Lu, K.H.; Fung, E.T.; Bast, R.C.; Jr. (2012). Proteomic biomarkers in combination with CA 125 for detection of epithelial ovarian cancer using prediagnostic serum samples from the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. Cancer, 118(1), 91-100.
Vaughan, S.; Coward, J. I.; Bast, R. C.; Jr.; et al. (2011). Rethinking ovarian cancer: recommendations for improving outcomes. Nature Reviews. Cancer, 11, 719-725.
Moore, R. G.; MacLaughlan, S.; & Bast, R. C.; Jr. (2010). Current state of biomarker development for clinical application in epithelial ovarian cancer. Gynecologic Oncology, 116, 240-245.
Lu, Z.; & Bast, R. C.; Jr. (2009). Tumor suppressor genes. Cancer Treatment and Research, 149, 109-129.
Samanta, A. K.; Huang, H. J.; Le, X. F.; et al. (2009). MEKK3 expression correlates with nuclear factor kappa B activity and with expression of antiapoptotic genes in serous ovarian carcinoma. Cancer, 115, 3897-3908.
Huang, S.; Chang, I.S.; Lin, W.; et al. 2009. ARHI (DIRAS3), an imprinted tumour suppressor gene, binds to importins and blocks nuclear import of cargo proteins. Bioscience Reports, 30, 159-168.
Kan, Z.; Jaiswal, B. S.; Stinson, J.; et al. (2011). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466, 869-873.
Bast, R. C.; Jr.; & Spriggs, D. R. (2011). More than a biomarker: CA125 may contribute to ovarian cancer pathogenesis. Gynecologic Oncology, 121, 429-430.
Zhu, C. S.; Pinsky, P. F.; Cramer, D. W.; et al. (2011). A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. Cancer Prevention Research (Philadelphia, Pa.), 4, 375-383.
Kalachand, R.; Hennessy, B. T.; & Markman, M. (2011). Molecular targeted therapy in ovarian cancer: what is on the horizon? Drugs, 71, 947-967.
Wilson, E. B.; El-Jawhari, J. J.; Neilson, A. L.; et al. (2001). Human tumour immune evasion via TGF-beta blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One, 6, e22842.
Papacleovoulou, G.; Critchley, H.; Hillier, S.G.; Mason, J.I. (2011). IL-1{alpha} and IL-4 signalling in human ovarian surface epithelial cells. Journal of Endocrinology, 211(3), 273-283.
Barbolina, M. V.; Burkhalter, R. J.; & Stack, M. S. (2011). Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochemistry Journal, 437, 1-12.
Comamala, M.; Pinard, M.; Theriault, C.; et al. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104, 989-999.
Mazzoletti, M.; & Broggini, M. (2010). PI3K/AKT/mTOR inhibitors in ovarian cancer. Current Medicinal Chemistry, 17, 4433-4447.
Hipp, S.; Berg, D.; Ergin, B.; et al. (2010). Interaction of Snail and p38 mitogen-activated protein kinase results in shorter overall survival of ovarian cancer patients. Virchows Archiv, 457, 705-713.
Bolitho, C.; Hahn, M. A.; Baxter, R. C.; & Marsh, D. J. (2010). The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocrine-Related Cancer, 17, 929-940.
Mertens-Walker, I.; Bolitho, C.; Baxter, R. C.; & Marsh, D. J. (2010). Gonadotropin-induced ovarian cancer cell migration and proliferation require extracellular signal-regulated kinase 1/2 activation regulated by calcium and protein kinase C{delta}. Endocrine-Related Cancer, 17, 335-349.
Falasca, M.; Chiozzotto, D.; Godage, H. Y.; et al. (2010). A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate. British Journal of Cancer, 102, 104-114.
Drummond, A. E.; & Fuller, P. J. (2010). The importance of ERbeta signalling in the ovary. Journal of Endocrinology, 205, 15-23.
Herrera, B.; van Dinther, M.; Ten Dijke, P.; & Inman, G. J. (2009). Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Research, 69, 9254-9262.
Helleman, J.; Jansen, M. P.; Burger, C.; van der Burg, M. E.; & Berns, E. M. (2010). Integrated genomics of chemotherapy resistant ovarian cancer: a role for extracellular matrix, TGFbeta and regulating microRNAs. The International Journal of Biochemistry & Cell Biology, 42, 25-30.
Papachroni, K.K.; Piperi, C.; Levidou, G.; et al. Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue. 2010. Journal of Cellular and Molecular Medicine, 14, 2460-2469.
Wang, Y.; Nicholls, P. K.; Stanton, P. G.; et al. (2009). Extra-ovarian expression and activity of growth differentiation factor 9. Journal of Endocrinology, 202, 419-430.
Drake, J.; Shearwood, A. M.; White, J.; et al. (2009). Expression of secreted frizzled-related protein 4 (SFRP4) in primary serous ovarian tumours. European Journal of Gynaecological Oncology, 30, 133-141.
Santra, M. K.; Wajapeyee, N.; & Green, M. R. (2009). F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature, 459, 722-725.
Trinh, X. B.; Tjalma, W. A.; Vermeulen, P. B.; et al. (2009). The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. British Journal of Cancer, 100, 971-978.
Colomiere, M.; Ward, A. C.; Riley, C.; et al. (2009). Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. British Journal of Cancer, 100, 134-144.
Kolasa, I. K.; Rembiszewska, A.; Felisiak, A.; et al. (2009). PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biology & Therapy, 8, 21-26.
Noske, A.; Lindenberg, J. L.; Darb-Esfahani, S.; et al. (2008). Activation of mTOR in a subgroup of ovarian carcinomas: correlation with p-eIF-4E and prognosis. Oncology Reports, 20, 1409-1417.
Colomiere, M.; Findlay, J.; Ackland, L.; & Ahmed, N. (2009). Epidermal growth factor-induced ovarian carcinoma cell migration is associated with JAK2/STAT3 signals and changes in the abundance and localization of alpha6beta1 integrin. The International Journal of Biochemistry & Cell Biology, 41, 1034-1045.
Papacleovoulou, G.; Edmondson, R. J.; Critchley, H. O.; Hillier, S. G.; & Mason, J. I. (2009). 3beta-Hydroxysteroid dehydrogenases and pre-receptor steroid metabolism in the human ovarian surface epithelium. Molecular and Cellular Endocrinology, 301, 65-73.
de Graeff, P.; Crijns, A. P.; Ten Hoor, K. A.; et al. (2008). The ErbB signalling pathway: protein expression and prognostic value in epithelial ovarian cancer. British Journal of Cancer, 99, 341-349.
Bleeker, F. E.; Felicioni, L.; Buttitta, F.; et al. (2008). AKT1(E17K) in human solid tumours. Oncogene, 27, 5648-5650.
Guo, R. X.; Qiao, Y. H.; Zhou, Y.; Li, L. X.; Shi, H. R.; & Chen, K. S. (2008). Increased staining for phosphorylated AKT and nuclear factor-kappaB p65 and their relationship with prognosis in epithelial ovarian cancer. Pathology International, 58, 749-756.
Guo, L. M.; Pu, Y.; Han, Z.; et al. (2009). MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS Journal, 276, 5537-5546.
Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431-436.
Karin, M. (2006). NF-kappaB and cancer: mechanisms and targets. Molecular Carcinogenesis, 45, 355-361.
Karin, M.; Lawrence, T.; & Nizet, V. (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 124, 823-835.
Manzano, R. G.; Montuenga, L. M.; Dayton, M.; et al. (2002). CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential. Oncogene, 21, 4435-4447.
Lengyel, E.; Stepp, E.; Gum, R.; & Boyd, D. (1995). Involvement of a mitogen-activated protein kinase signaling pathway in the regulation of urokinase promoter activity by c-Ha-ras. Journal of Biological Chemistry, 270, 23007-23012.
Felip, E.; Encabo, G.; Vidal, M. T.; Vera, R.; del Campo, J. M.; & Rubio, D. (1995). C-erbB-2 protein in ovarian epithelial cancer: correlation between expression in tumor tissue and blood levels. Medicina Clínica (Barcelona), 105, 5-8.
Felip, E.; Del Campo, J. M.; Rubio, D.; Vidal, M. T.; Colomer, R.; & Bermejo, B. (1995). Overexpression of c-erbB-2 in epithelial ovarian cancer. Prognostic value and relationship with response to chemotherapy. Cancer, 75, 2147-2152.
Teixeira, J.; Maheswaran, S.; & Donahoe, P. K. (2001). Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocrine Reviews, 22, 657-674.
Braun, A. H.; & Coffey, R. J. (2005). Lysophosphatidic acid, a disintegrin and metalloprotease-17 and heparin-binding epidermal growth factor-like growth factor in ovarian cancer: the first word, not the last. Clinical Cancer Research, 11, 4639-4643.
Gewinner, C.; Wang, Z. C.; Richardson, A.; et al. (2009). Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell, 16, 115-125.
Imamov, O.; Shim, G. J.; Warner, M.; & Gustafsson, J. A. (2005). Estrogen receptor beta in health and disease. Biology of Reproduction, 73, 866-871.
Lindgren, P. R.; Cajander, S.; Backstrom, T.; Gustafsson, J. A.; Makela, S.; & Olofsson, J. I. (2004). Estrogen and progesterone receptors in ovarian epithelial tumors. Molecular and Cellular Endocrinology, 221, 97-104.
Li, A. J.; Baldwin, R. L.; & Karlan, B. Y. (2003). Estrogen and progesterone receptor subtype expression in normal and malignant ovarian epithelial cell cultures. American Journal of Obstetrics and Gynecology, 189, 22-27.
Lazennec, G. (2005). Retraction: article on estrogen receptor beta in ovarian carcinogenesis. Cancer Research, 65, 5480.
Ye, B.; Cramer, D. W.; Skates, S. J.; et al. (2003). Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clinical Cancer Research, 9, 2904-2911.
Yu, J. K.; Zheng, S.; Tang, Y.; & Li, L. (2005). An integrated approach utilizing proteomics and bioinformatics to detect ovarian cancer. Journal of Zhejiang University. Science. B, 6, 227-231.
Conrads, T. P.; Fusaro, V. A.; Ross, S.; et al. (2004). High-resolution serum proteomic features for ovarian cancer detection. Endocrine-Related Cancer, 11, 163-178.
Zhu, Y.; Wu, R.; Sangha, N.; et al. (2006). Classifications of ovarian cancer tissues by proteomic patterns. Proteomics, 6, 5846-5856.
Kim, H.; Wu, R.; Cho, K. R.; et al. (2008). Comparative proteomic analysis of low stage and high stage endometrioid ovarian adenocarcinomas. Proteomics. Clinical Applications, 2, 571-584.
Lemaire, R.; Menguellet, S. A.; Stauber, J.; et al. (2007). Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11 S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. Journal of Proteome Research, 6, 4127-4134.
Franck, J.; Arafah, K.; Elayed, M.; et al. (2009). MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Molecular & Cellular Proteomics, 8, 2023-2033.
Gustafsson, J. O.; Oehler, M. K.; McColl, S. R.; & Hoffmann, P. (2010). Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. Journal of Proteome Research, 9, 4315-4328.
Gustafsson, J. O.; Oehler, M. K.; Ruszkiewicz, A.; McColl, S. R.; & Hoffmann, P. (2011). MALDI Imaging Mass Spectrometry (MALDI-IMS)-Application of Spatial Proteomics for Ovarian Cancer Classification and Diagnosis. International Journal of Molecular Sciences, 12, 773-794.
Kikuchi, N.; Horiuchi, A.; Osada, R.; et al. (2006). Nuclear expression of S100A4 is associated with aggressive behavior of epithelial ovarian carcinoma: an important autocrine/paracrine factor in tumor progression. Cancer Science, 97, 1061-1069.
El Ayed, M.; Bonnel, D.; Longuespee, R.; et al. (2010). MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Medical Science Monitor, 16, BR233-BR245.
Gortzak-Uzan, L.; Ignatchenko, A.; Evangelou, A. I.; et al. (2008). A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. Journal of Proteome Research, 7, 339-351.
Makino, E.; Sakaguchi, M.; Iwatsuki, K.; & Huh, N. H. (2004). Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. Journal of Molecular Medicine, 82, 612-620.
Sakaguchi, M.; Miyazaki, M.; Sonegawa, H.; et al. (2004). PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. The Journal of Cell Biology, 164, 979-984.
Yang, Z.; Tao, T.; Raftery, M. J.; Youssef, P.; Di Girolamo, N.; & Geczy, C. L. (2001). Proinflammatory properties of the human S100 protein S100A12. Journal of Leukocyte Biology, 69, 986-994.
Do, T. V.; Kubba, L. A.; Du, H.; Sturgis, C. D.; & Woodruff, T. K. (2008). Transforming growth factor-beta1, transforming growth factor-beta2, and transforming growth factor-beta3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Molecular Cancer Research, 6, 695-705.
Rodriguez, G. C.; Haisley, C.; Hurteau, J.; et al. (2001). Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta. Gynecologic Oncology, 80, 245-253.
Sood, A. K.; Fletcher, M. S.; Coffin, J. E.; et al. (2004). Functional role of matrix metalloproteinases in ovarian tumor cell plasticity. American Journal of Obstetrics and Gynecology, 190, 899-909.
Sood, A. K.; Seftor, E. A.; Fletcher, M. S.; et al. (2001). Molecular determinants of ovarian cancer plasticity. American Journal of Pathology, 158, 1279-1288.
Vergara, D.; Merlot, B.; Lucot, J.P.; et al. (2010). Epithelial- mesenchymal transition in ovarian cancer. Cancer Letters, 291(1), 59-66.
Giuntoli, R. L.; 2nd, Webb, T. J.; Zoso, A.; et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875-2884.
Xie, X.; Ye, D.; Chen, H.; Lu, W.; Cheng, B.; & Zhong, H. (2004). Interleukin-7 and suppression of local peritoneal immunity in ovarian carcinoma. International Journal of Gynaecology and Obstetrics, 85, 151-158.
Lambeck, A. J.; Crijns, A. P.; Leffers, N.; et al. (2007). Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin 7. Clinical Cancer Research, 13, 2385-2391.
Kitagawa, K.; Murata, A.; Matsuura, N.; et al. (1996). Epithelial-mesenchymal transformation of a newly established cell line from ovarian adenosarcoma by transforming growth factor-beta1. International Journal of Cancer, 66, 91-97.
Keshamouni, V. G.; Michailidis, G.; Grasso, C. S.; et al. (2006). Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. Journal of Proteome Research, 5, 1143-1154.
Vergara, D.; Merlot, B.; Lucot, J. P.; et al. (2010). Epithelial-mesenchymal transition in ovarian cancer. Cancer Letters, 291, 59-66.
Mor, G.; Visintin, I.; Lai, Y.; et al. (2005). Serum protein markers for early detection of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 102, 7677-7682.
Choi, J. H.; Lee, K. T.; & Leung, P. C. (2011). Estrogen receptor alpha pathway is involved in leptin-induced ovarian cancer cell growth. Carcinogenesis, 32, 589-596.
Levina, V. V.; Nolen, B.; Su, Y.; et al. (2009). Biological significance of prolactin in gynecologic cancers. Cancer Research, 69, 5226-5233.
Song, G.; Cai, Q. F.; Mao, Y. B.; Ming, Y. L.; Bao, S. D.; & Ouyang, G. L. (2008). Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Science, 99, 1901-1907.
Lee, E. J.; Mircean, C.; Shmulevich, I.; et al. (2005). Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Molecular Cancer, 4, 7.
Guo, X.; Liu, G.; Schauer, I. G.; et al. (2011). Overexpression of the beta subunit of human chorionic gonadotropin promotes the transformation of human ovarian epithelial cells and ovarian tumorigenesis. American Journal of Pathology, 179, 1385-1393.
Boss, D.S.; Glen, H.; Beijnen, J.H.; et al. Serum beta-HCG and CA-125 as tumor markers in a patient with osteosarcoma: case report. Tumori, 97, 109-114.
Pejcic, I.; Vrbic, S.; Filipovic, S.; et al. (2010). [Significance of serum tumor markers monitoring metastases in carcinomas of unknown primary site]. Vojnosanitetski Pregled, 67, 723-731.
Tavares Murta, B. M.; Cunha Fde, Q.; Miranda, R.; Adad, S. J.; & Murta, E. F. (2004). Differential tumor microenvironment in human ovarian cystic tumors. Tumori, 90, 491-497.
Perkins, G. L.; Slater, E. D.; Sanders, G. K.; & Prichard, J. G. (2003). Serum tumor markers. American Family Physician, 68, 1075-1082.
Clarke, B.; Tinker, A. V.; Lee, C. H.; et al. (2009). Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Modern Pathology, 22, 393-402.
Curiel, T. J.; Coukos, G.; Zou, L.; et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10, 942-949.
Preston, C. C.; Goode, E. L.; Hartmann, L. C.; Kalli, K. R.; & Knutson, K. L. (2011). Immunity and immune suppression in human ovarian cancer. Immunotherapy, 3, 539-556.
Yigit, R.; Massuger, L. F.; Figdor, C. G.; & Torensma, R. (2010). Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecologic Oncology, 117, 366-372.
Nonaka, H.; Saga, Y.; Fujiwara, H.; et al. (2011). Indoleamine 2,3-dioxygenase promotes peritoneal dissemination of ovarian cancer through inhibition of natural killercell function and angiogenesis promotion. International Journal of Oncology, 38, 113-120.
Ino, K. (2011). Indoleamine 2,3-dioxygenase and immune tolerance in ovarian cancer. Current Opinion in Obstetrics and Gynecology, 23, 13-18.
Inaba, T.; Ino, K.; Kajiyama, H.; et al. (2009). Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecologic Oncology, 115, 185-192.
Okamoto, A.; Nikaido, T.; Ochiai, K.; et al. (2005). Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clinical Cancer Research, 11, 6030-6039.
Nelson, B. H. (2009). IDO and outcomes in ovarian cancer. Gynecologic Oncology, 115, 179-180.
Loercher, A. E.; Nash, M. A.; Kavanagh, J. J.; Platsoucas, C. D.; & Freedman, R. S. (1999). Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. The Journal of Immunology, 163, 6251-6260.
Wei, S.; Kryczek, I.; Zou, L.; et al. (2005). Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Research, 65, 5020-5026.
Jung, Y. W.; Kim, Y. T.; Kim, S. W.; et al. (2009). Correlation of human leukocyte antigen-G (HLA-G) expression and disease progression in epithelial ovarian cancer. Reproductive Sciences, 16, 1103-1111.
Menier, C.; Prevot, S.; Carosella, E. D.; & Rouas-Freiss, N. (2009). Human leukocyte antigen-G is expressed in advanced-stage ovarian carcinoma of high-grade histology. Human Immunology, 70, 1006-1009.
Sheu, J. J.; & Shih Ie, M. (2007). Clinical and biological significance of HLA-G expression in ovarian cancer. Seminars in Cancer Biology, 17, 436-443.
Rebmann, V.; Regel, J.; Stolke, D.; & Grosse-Wilde, H. (2003). Secretion of sHLA-G molecules in malignancies. Seminars in Cancer Biology, 13, 371-377.
Singer, G.; Rebmann, V.; Chen, Y. C.; et al. (2003). HLA-G is a potential tumor marker in malignant ascites. Clinical Cancer Research, 9, 4460-4464.
Mach, P.; Blecharz, P.; Basta, P.; et al. (2010). Differences in the soluble HLA-G blood serum concentration levels in patients with ovarian cancer and ovarian and deep endometriosis. American Journal of Reproductive Immunology, 63, 387-395.
Lin, A.; Yan, W. H.; Xu, H. H.; et al. (2007). HLA-G expression in human ovarian carcinoma counteracts NK cell function. Annals of Oncology, 18, 1804-1809.
Simon, I.; & Katsaros, D. (2007). Rigault de la Longrais I, et al. B7-H4 is over-expressed in early-stage ovarian cancer and is independent of CA125 expression. Gynecologic Oncology, 106, 334-341.
Simon, I.; Liu, Y.; Krall, K. L.; et al. (2007). Evaluation of the novel serum markers B7-H4, Spondin 2, and DcR3 for diagnosis and early detection of ovarian cancer. Gynecologic Oncology, 106, 112-118.
Simon, I.; Zhuo, S.; Corral, L.; et al. (2006). B7-h4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer. Cancer Research, 66, 1570-1575.
Gubbels, J. A.; Felder, M.; Horibata, S.; et al. (2010). MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Molecular Cancer, 9.
Krockenberger, M.; Dombrowski, Y.; Weidler, C.; et al. (2008). Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. The Journal of Immunology, 180, 7338-7348.
Agarwal, R.; Whang, D. H.; Alvero, A. B.; et al. (2007). Macrophage migration inhibitory factor expression in ovarian cancer. American Journal of Obstetrics and Gynecology, 196, 348 e1-348 e5.
Sonoda, K.; Miyamoto, S.; Yotsumoto, F.; et al. (2007). Clinical significance of RCAS1 as a biomarker of ovarian cancer. Oncology Reports, 17, 623-628.
McGilvray, R. W.; Eagle, R. A.; Rolland, P.; Jafferji, I.; Trowsdale, J.; & Durrant, L. G. (2010). ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. International Journal of Cancer, 127, 1412-1420.
Franck, J.; Longuespee, R.; Wisztorski, M.; et al. (2010). MALDI mass spectrometry imaging of proteins exceeding 30,000 daltons. Medical Science Monitor, 16, BR293-BR299.
Lemaire, R.; Lucot, J. P.; Collinet, P.; Vinatier, D.; Tabet, J. C.; Salzet, M.; & Fournier, I. (2005). New developments in direct analyses by MALDI mass spectrometry for study ovarian cancer. Molecular & Cellular Proteomics, 4, S305-S308.
Yang, Y.; Fruh, K.; Ahn, K.; & Peterson, P. A. (1995). in vivo assembly of the proteasomal complexes, implications for antigen processing. Journal of Biological Chemistry, 270, 27687-27694.
Kloetzel, P. M. (1998). The proteasome system: a neglected tool for improvement of novel therapeutic strategies? Gene Therapy, 5, 1297-1298.
Rivett, A. J.; & Gardner, R. C. (2000). Proteasome inhibitors: from in vitro uses to clinical trials. Journal of Peptide Science, 6, 478-488.
Rotem-Yehudar, R.; Groettrup, M.; Soza, A.; Kloetzel, P. M.; & Ehrlich, R. (1996). LMP-associated proteolytic activities and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. The Journal of Experimental Medicine, 183, 499-514.
Kuckelkorn, U.; Ruppert, T.; Strehl, B.; et al. (2002). Link between organ-specific antigen processing by 20S proteasomes and CD8(+) T cell-mediated autoimmunity. The Journal of Experimental Medicine, 195, 983-990.
Regad, T.; Saib, A.; Lallemand-Breitenbach, V.; Pandolfi, P. P.; de The, H.; & Chelbi-Alix, M. K. (2001). PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO Journal, 20, 3495-3505.
Delp, K.; Momburg, F.; Hilmes, C.; Huber, C.; & Seliger, B. (2000). Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplantation, 25(Suppl 2), S88-S95.
Sorem, J.; Jardetzky, T. S.; & Longnecker, R. (2009). Cleavage and secretion of Epstein-Barr virus glycoprotein 42 promote membrane fusion with B lymphocytes. Journal of Virology, 83, 6664-6672.
Sorem, J.; & Longnecker, R. (2009). Cleavage of Epstein-Barr virus glycoprotein B is required for full function in cell-cell fusion with both epithelial and B cells. Journal of General Virology, 90, 591-595.
Pudney, V. A.; Leese, A. M.; Rickinson, A. B.; & Hislop, A. D. (2005). CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. The Journal of Experimental Medicine, 201, 349-360.
Elg, S. A.; Mayer, A. R.; Carson, L. F.; Twiggs, L. B.; Hill, R. B.; & Ramakrishnan, S. (1997). Alpha-1 acid glycoprotein is an immunosuppressive factor found in ascites from ovaria carcinoma. Cancer, 80, 1448-1456.
Nosov, V.; Su, F.; Amneus, M.; et al. (2009). Validation of serum biomarkers for detection of early-stage ovarian cancer. American Journal of Obstetrics and Gynecology, 200, 639 e1-639 e5.
Kim, K. D.; Lim, H. Y.; Lee, H. G.; et al. (2005). Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochemical and Biophysical Research Communications, 338, 1126-1136.
Liang, X.; Lin, T.; Sun, G.; Beasley-Topliffe, L.; Cavaillon, J. M.; & Warren, H. S. (2009). Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages. Journal of Leukocyte Biology, 86, 229-235.
Leygue, E.; Snell, L.; Dotzlaw, H.; et al. (1998). Expression of lumican in human breast carcinoma. Cancer Research, 58, 1348-1352.
Leygue, E.; Snell, L.; Dotzlaw, H.; et al. (2000). Lumican and decorin are differentially expressed in human breast carcinoma. The Journal of Pathology, 192, 313-320.
Babelova, A.; Moreth, K.; Tsalastra-Greul, W.; et al. (2009). Biglycan: A danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. Journal of Biological Chemistry, 284(36), 24035-24048.
Schaefer, L.; Babelova, A.; Kiss, E.; et al. (2005). The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. Journal of Clinical Investigation, 115, 2223-2233.
Salzet, M.; Capron, A.; & Stefano, G. B. (2000). Molecular crosstalk in host-parasite relationships: schistosome- and leech-host interactions. Parasitology Today, 16, 536-540.
Huber, M. A.; Kraut, N.; & Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17, 548-558.
Cavallaro, U.; & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews. Cancer, 4, 118-132.
Ponnusamy, M. P.; Lakshmanan, I.; Jain, M.; et al. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene, 29, 5741-5754.
Hudson, L. G.; Zeineldin, R.; & Stack, M. S. (2008). Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clinical & Experimental Metastasis, 25, 643-655.
Imai, T.; Horiuchi, A.; Wang, C.; et al. (2003). Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. American Journal of Pathology, 163, 1437-1447.
Byrne, A. T.; Ross, L.; Holash, J.; et al. (2003). Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clinical Cancer Research, 9, 5721-5728.
Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; et al. (1996). The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. British Journal of Cancer, 73, 301-306.
Symowicz, J.; Adley, B. P.; Gleason, K. J.; et al. (2007). Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Research, 67, 2030-2039.
Ellerbroek, S. M.; Halbleib, J. M.; Benavidez, M.; et al. (2001). Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Research, 61, 1855-1861.
Nagy, J. A.; Masse, E. M.; Herzberg, K. T.; et al. (1995). Pathogenesis
Casey, R. C.; Burleson, K. M.; Skubitz, K. M.; et al. (2001). Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. American Journal of Pathology, 159, 2071-2080.
Shield, K.; Riley, C.; Quinn, M. A.; Rice, G. E.; Ackland, M. L.; & Ahmed, N. (2007). Alpha2beta1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. Journal of Carcinogenesis, 6, 11.
Moss, N. M.; Barbolina, M. V.; Liu, Y.; Sun, L.; Munshi, H. G.; & Stack, M. S. (2009). Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: a potential role in I.p. metastatic dissemination. Cancer Research, 69, 7121-7129.
Davidson, B.; Goldberg, I.; Berner, A.; et al. (2001). Expression of membrane-type 1, 2, and 3 matrix metalloproteinases messenger RNA in ovarian carcinoma cells in serous effusions. American Journal of Clinical Pathology, 115, 517-524.
Slack-Davis, J. K.; Atkins, K. A.; Harrer, C.; Hershey, E. D.; & Conaway, M. (2009). Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Research, 69, 1469-1476.
Cannistra, S. A.; Kansas, G. S.; Niloff, J.; DeFranzo, B.; Kim, Y.; & Ottensmeier, C. (1993). Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Research, 53, 3830-3838.
Zecchini, S.; Bombardelli, L.; Decio, A.; et al. (2011). The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Molecular Medicine, 3, 480-494.
Kenny, H. A.; Kaur, S.; Coussens, L. M.; & Lengyel, E. (2008). The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. Journal of Clinical Investigation, 118, 1367-1379.
Kenny, H. A.; & Lengyel, E. (2009). MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell Cycle, 8, 683-688.
Huang, S.; Van Arsdall, M.; Tedjarati, S.; et al. (2002). Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute, 94, 1134-1142.
Satpathy, M.; Shao, M.; Emerson, R.; Donner, D. B.; & Matei, D. (2009). Tissue transglutaminase regulates matrix metalloproteinase-2 in ovarian cancer by modulating cAMP-response element-binding protein activity. Journal of Biological Chemistry, 284, 15390-15399.
Dorn, J.; Harbeck, N.; Kates, R.; et al. Impact of expression differences of kallikrein-related peptidases and of uPA and PAI-1 between primary tumor and omentum metastasis in advanced ovarian cancer. Annals of Oncology, 22, 877-883.
Nishida, N.; Yano, H.; Komai, K.; Nishida, T.; Kamura, T.; & Kojiro, M. (2004). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 2 are related closely to the prognosis of patients with ovarian carcinoma. Cancer, 101, 1364-1374.
Zhu, M.; Fejzo, M. S.; Anderson, L.; et al. (2011). Periostin promotes ovarian cancer angiogenesis and metastasis. Gynecologic Oncology, 119, 337-344.
Popple, A.; Durrant, L. G.; Spendlove, I.; et al. (2012). The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer. British Journal of Cancer, 106, 1306-1313.
Johnson, E. L.; Singh, R.; Singh, S.; et al. (2010). CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion. World Journal of Surgical Oncology, 8, 62.
Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Natural Medicines, 17, 1498-1503.
Zhang, Y.; Tang, H.; Cai, J.; et al. (2011). Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Letters, 303, 47-55.
He, Y.; Wu, X.; Liu, X.; Yan, G.; & Xu, C. (2010). LC-MS/MS analysis of ovarian cancer metastasis-related proteins using a nude mouse model: 14-3-3 zeta as a candidate biomarker. Journal of Proteome Research, 9, 6180-6190.
Yaffe, M. B.; Rittinger, K.; Volinia, S.; et al. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell, 91, 961-971.
Ogihara, T.; Isobe, T.; Ichimura, T.; et al. (1997). 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. Journal of Biological Chemistry, 272, 25267-25274.
Deakin, N. O.; Bass, M. D.; Warwood, S.; et al. (2009). An integrin-alpha4-14-3-3zeta-paxillin ternary complex mediates localised Cdc42 activity and accelerates cell migration. Journal of Cell Science, 122, 1654-1664.
Ravi, D.; Chen, Y.; Karia, B.; et al. 14-3-3 sigma expression effects G2/M response to oxygen and correlates with ovarian cancer metastasis. PLoS One, 6, e15864.
Fong, M.Y.; McDunn, J.; Kakar, S.S. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One, 6, e19963.
Ozols, R. F.; Bookman, M. A.; Connolly, D. C.; et al. (2004). Focus on epithelial ovarian cancer. Cancer Cell, 5, 19-24.
Bast, R. C.; Jr.; Klug, T. L.; St John, E.; et al. (1983). A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. The New England Journal of Medicine, 309, 883-887.
Nustad, K.; Bast, R. C.; Jr.; Brien, T. J.; et al. (1996). Specificity and affinity of 26 monoclonal antibodies against the CA 125 antigen: first report from the ISOBM TD-1 workshop. International Society for Oncodevelopmental Biology and Medicine. Tumour Biology, 17, 196-219.
Ripley, D.; Shoup, B.; Majewski, A.; & Chegini, N. (2004). Differential expression of interleukins IL-13 and IL-15 in normal ovarian tissue and ovarian carcinomas. Gynecologic Oncology, 92, 761-768.
Kioi, M.; Kawakami, M.; Shimamura, T.; Husain, S. R.; & Puri, R. K. (2006). Interleukin-13 receptor alpha2 chain: a potential biomarker and molecular target for ovarian cancer therapy. Cancer, 107, 1407-1418.
Hellstrom, I.; Raycraft, J.; Hayden-Ledbetter, M.; et al. (2003). The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Research, 63, 3695-3700.
Suzuki, M.; Ohwada, M.; Aida, I.; Tamada, T.; Hanamura, T.; & Nagatomo, M. (1993). Macrophage colony-stimulating factor as a tumor marker for epithelial ovarian cancer. Obstetrics and Gynecology, 82, 946-950.
Xu, F. J.; Ramakrishnan, S.; Daly, L.; et al. (1991). Increased serum levels of macrophage colony-stimulating factor in ovarian cancer. American Journal of Obstetrics and Gynecology, 165, 1356-1362.
Chechlinska, M.; Kaminska, J.; Markowska, J.; Kramar, A.; & Steffen, J. (2007). Peritoneal fluid cytokines and the differential diagnosis of benign and malignant ovarian tumors and residual/recurrent disease examination. The International Journal of Biological Markers, 22, 172-180.
Xu, Y.; Shen, Z.; Wiper, D. W.; et al. (1998). Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. Journal of the American Medical Association, 280, 719-723.
Woolas, R. P.; Conaway, M. R.; Xu, F.; et al. (1995). Combinations of multiple serum markers are superior to individual assays for discriminating malignant from benign pelvic masses. Gynecologic Oncology, 59, 111-116.
Zhang, Z.; Barnhill, S. D.; Zhang, H.; et al. (1999). Combination of multiple serum markers using an artificial neural network to improve specificity in discriminating malignant from benign pelvic masses. Gynecologic Oncology, 73, 56-61.
Visintin, I.; Feng, Z.; Longton, G.; et al. (2008). Diagnostic markers for early detection of ovarian cancer. Clinical Cancer Research, 14, 1065-1072.
Moore, R. G.; & Maclaughlan, S. (2010). Current clinical use of biomarkers for epithelial ovarian cancer. Current Opinion in Oncology, 22, 492-497.
Kurman, R.J.; McConnell, T.G. Characterization and comparison of precursors of ovarian and endometrial carcinoma: parts I and II. International Journal of Surgical Pathology, 18, 181S-189S.
Kurman, R. J.; & McConnell, T. G. (2010). Precursors of endometrial and ovarian carcinoma. Virchows Archiv, 456, 1-12.
Kurman, R. J.; & Shih Ie, M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American Journal of Surgical Pathology, 34, 433-443.
Longuespé, R.B.; CCastellier, C.; Jacquet, E.; Desmons, A.; Kerdraon, O.; Vinatier, D.; Day, R.; Fournier, I.; Salzet, M. The C-terminal fragment of the immunoproteasome PA28S (Reg Alpha) as an early diagnosis and tumor-relapse biomarker: evidence from mass spectrometry profiling. Histochem and Cell Biochem 2012; in press: D.O.I. 10.1007/s00418-012-0953-0.
Tinelli, A.; Vergara, D.; Martignago, R.; et al. (2007). Ovarian cancer biomarkers: a focus on genomic and proteomic findings. Current Genomics, 8, 335-342.
Diefenbach, C. S.; Soslow, R. A.; Iasonos, A.; et al. (2006). Lysophosphatidic acid acyltransferase-beta (LPAAT-beta) is highly expressed in advanced ovarian cancer and is associated with aggressive histology and poor survival. Cancer, 107, 1511-1519.
Kim, H.; Watkinson, J.; Varadan, V.; & Anastassiou, D. (2010). Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Medical Genomics, 3, 51.
Oikonomopoulou, K.; Batruch, I.; Smith, C. R.; Soosaipillai, A.; Diamandis, E. P.; & Hollenberg, M. D. (2010). Functional proteomics of kallikrein-related peptidases in ovarian cancer ascites fluid. Biological Chemistry, 391, 381-390.
Ahmed, A. S.; Dew, T.; Lawton, F. G.; et al. (2007). Tumour M2-PK as a predictor of surgical outcome in ovarian cancer, a prospective cohort study. European Journal of Gynaecological Oncology, 28, 103-108.
Ayhan, A.; Ertunc, D.; & Tok, E. C. (2005). Expression of the c-Met in advanced epithelial ovarian cancer and its prognostic significance. International Journal of Gynecological Cancer, 15, 618-623.
Tang, M.K.; Zhou, H.Y.; Yam, J.W.; Wong, A.S. c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia, 12, 128-138.
Zhou, H. Y.; Pon, Y. L.; & Wong, A. S. (2008). HGF/MET signaling in ovarian cancer. Current Molecular Medicine, 8, 469-480.
Coffelt, S. B.; Marini, F. C.; Watson, K.; et al. (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 3806-3811.
Zohny, S. F.; & Fayed, S. T. (2010). Clinical utility of circulating matrix metalloproteinase-7 (MMP-7), CC chemokine ligand 18 (CCL18) and CC chemokine ligand 11 (CCL11) as markers for diagnosis of epithelial ovarian cancer. Medical Oncology, 27, 1246-1253.
Landen, C. N.; Kinch, M. S.; & Sood, A. K. (2005). EphA2 as a target for ovarian cancer therapy. Expert Opinion on Therapeutic Targets, 9, 1179-1187.
Lu, C.; Shahzad, M. M.; Wang, H.; et al. (2008). EphA2 overexpression promotes ovarian cancer growth. Cancer Biology & Therapy, 7, 1098-1103.
Thaker, P. H.; Deavers, M.; Celestino, J.; et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145-5150.
Kobel, M.; Kalloger, S. E.; Boyd, N.; et al. (2008). Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Medicine, 5, e232.
Lim, R.; Ahmed, N.; Borregaard, N.; et al. (2007). Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. International Journal of Cancer, 120, 2426-2434.
Bjorge, L.; Hakulinen, J.; Vintermyr, O. K.; et al. (2005). Ascitic complement system in ovarian cancer. British Journal of Cancer, 92, 895-905.
Fischer, D. C.; Noack, K.; Runnebaum, I. B.; et al. (2004). Expression of splicing factors in human ovarian cancer. Oncology Reports, 11, 1085-1090.
Surowiak, P.; Materna, V.; Maciejczyk, A.; et al. (2006). CD46 expression is indicative of shorter revival-free survival for ovarian cancer patients. Anticancer Research, 26, 4943-4948.
Rousseau, J.; Tetu, B.; Caron, D.; et al. (2002). RCAS1 is associated with ductal breast cancer progression. Biochemical and Biophysical Research Communications, 293, 1544-1549.
Tilli, T. M.; Franco, V. F.; Robbs, B. K.; et al. (2011). Osteopontin-c splicing isoform contributes to ovarian cancer progression. Molecular Cancer Research, 9(3), 280-293.
Yan, X. D.; & Pan, L. Y. (2006). Proteomic analysis of human ovarian cancer cell lines and their platinum-resistant clones. Zhonghua Fu Chan Ke Za Zhi, 41, 584-587.
Yan, X. D.; Pan, L. Y.; Yuan, Y.; Lang, J. H.; & Mao, N. (2007). Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines. Journal of Proteome Research, 6, 772-780.
Nishimura, S.; Tsuda, H.; Kataoka, F.; et al. (2011). Overexpression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Human Pathology, 42(4), 516-521.
Jones, M. B.; Krutzsch, H.; Shu, H.; et al. (2002). Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics, 2, 76-84.
Alper, T.; Kahraman, H.; Cetinkaya, M. B.; et al. (2004). Serum leptin and body composition in polycystic ovarian syndrome. Annals of Saudi Medicine, 24, 9-12.
Erturk, E.; & Tuncel, E. (2003). Polycystic ovarian disease and serum leptin levels? Fertility and Sterility, 80, 1068-1069. author reply 9-70.
Qian, B.; Katsaros, D.; Lu, L.; et al. (2011). IGF-II promoter specific methylation and expression in epithelial ovarian cancer and their associations with disease characteristics. Oncology Reports, 25, 203-213.
Park, E. K.; Johnson, A. R.; Yates, D. H.; & Thomas, P. S. (2011). Evaluation of ovarian cancer biomarkers in subjects with benign asbestos-related pleural diseases. Clinical Chemistry and Laboratory Medicine, 49, 147-150.
Bengtsson, S.; Krogh, M.; Szigyarto, C. A.; et al. (2007). Large-scale proteomics analysis of human ovarian cancer for biomarkers. Journal of Proteome Research, 6, 1440-1450.