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Abstract Ovarian cancer (OVC) is the fourth leading cause
of cancer mortality among women in Europe and the United
States. Its early detection is difficult due to the lack of
specificity of clinical symptoms. Unfortunately, late diagno-
sis is a major contributor to the poor survival rates for OVC,
which can be attributed to the lack of specific sets of
markers. Aside from patients sharing a strong family history
of ovarian and breast cancer, including the BRCA1 and
BRCA2 tumor suppressor genes mutations, the most used
biomarker is the Cancer-antigen 125 (CA-125). CA-125 has
a sensitivity of 80 % and a specificity of 97 % in epithelial
cancer (stage III or IV). However, its sensitivity is 30 % in
stage I cancer, as its increase is linked to several physiological

phenomena and benign situations. CA-125 is particularly
useful for at-risk population diagnosis and to assess response
to treatment. It is clear that alone, CA-125 is inadequate as a
biomarker for OVC diagnosis. There is an unmet need to
identify additional biomarkers. Novel and more sensitive pro-
teomic strategies such as MALDI mass spectrometry imaging
studies are well suited to identify better markers for both
diagnosis and prognosis. In the present review, we will focus
on such proteomic strategies in regards to OVC signaling
pathways, OVC development and escape from the immune
response.
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1 Introduction

Age, genetic profile, hormonal profile (early onset of men-
ses, high number of ovulatory cycles, late menopause, in-
fertility, endometriosis), environmental factors (e.g., diet,
obesity, smoking, virus), geographical areas, the racial and
ethnic variation (correlated with the genetic inheritance) are
all factors that have been implicated in OVC development
([1,2] ); [3,4] .; [5] Only 5–10 % of OVC is hereditary [6]. In
this context, CA-125 is insufficient as a single biomarker for
OVC diagnosis [7]. OVC etiology is multiple, thus, like
finding a needle in a haystack, identifying and validating a
single specific biomarker appears to be a very low proba-
bility event. There is an unmet medical need to aid in
screening and diagnosis, and thus alternative strategies need
to be considered.
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2 OVC signaling pathways

Major intracellular signaling pathways are involved in OVC
cell development. The understanding of the malignant
mechanisms and the transformation of ovary cells to epithe-
lial OVC are seen as a path to identify specific OVC bio-
markers. The genetic studies reflect that OVC polymorphisms
are highly unstable [8]. In fact, genic amplification, mutations,
hypermethylations, and numerous chromosomal deletions
have been found in OVC pointing the identification of several
main categories of genes involved in OVC development such
as tumor suppressor genes and oncogenes (Table 1) [6,9–12].
Thus, these genes are directly linked to cell signaling path-
ways, which play a central role in cancer cell growth, survival,
invasion, and metastasis [13]. Discovering the "circuit maps"
of these signaling pathways in OVC seems a good challenge
for detecting novel therapeutic strategies [14–16]. According
to literature, the signaling pathways associated with OVC are
the followings: the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) pathway, the activator of tran-
scription 3 (Jak-STAT 3) pathway, the mitogen-activated pro-
tein kinase (MAPK) pathway, the proto-oncogene tyrosine-
protein kinase Src pathway, the ErbB activation pathway, the
lysophosphatidic acid (LPA) pathway, the phosphatidylinosi-
tol 3-kinases (PI3K) pathway, the Mullerian inhibitory sub-
stance receptor pathway, the EGF and VGEF pathways and
the ER beta pathway [17–40].

2.1 Nuclear factor kappa-light-chain-enhancer of activated
B cells pathway

A correlation has been demonstrated between nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB)
activation and OVC clinical profile showing that the expres-
sion of NF-κB p65 in OVC tumors is mainly nuclear and
that their levels correlate with poor differentiation and late
FIGO stage [41]. Positive patients for NF-κB p65 subunit
staining had lower cumulative survival rates and lower
median survival (20 % and 24 months, respectively) than
negative patients (46.2 % and 39 months, respectively).
Recently, microRNA-9 (miR-9) has been shown to down-
regulate the levels of NF-κB1 [42]. Moreover, results from
gene expression microarray, using the highly specific IKKβ
small-molecule inhibitor ML120b or IKKβ siRNA to de-
crease IKKβ expression, showed that IKKβ-NF-κB path-
way controls genes associated with OVC cell proliferation,
adhesion, invasion, angiogenesis, and the creation of a pro-
inflammatory microenvironment. The NF-κB family pro-
teins are implicated in signaling pathways driving tumor
development and progression by activating anti-apoptotic
genes. It also activates genes involved in cell cycle progres-
sion and the secretion of tumor necrosis factor (TNF) α,
interleukin (IL)-6, and growth hormones. Moreover, NF-κB

regulates genes promoting pro-angiogenic environment
through enhanced production of IL-8 and vascular endothe-
lial growth factor and creation of a microenvironment that
may prevent immune surveillance [43–45].

2.2 The mitogen-activated protein kinase pathway

Previous studies identified that mitogen-activated protein
kinase (MAPK) pathway is activated in OVC (ref). The
downregulation of CL100, an endogenous dual-specificity
phosphatase known to inhibit MAPK, plays a role in pro-
gression of human OVC by promoting MAPK pathway
[46]. OVC epithelial cells display 10–25 times less activity
of C100 compared to normal ovarian epithelial cells. The
MEK inhibitor PD98059 sensitized OVC cell lines to Cis-
platin. Upregulation of CL100 in ovarian cancer cells
decreases adherent and non-adherent cells growth and indu-
ces phenotypic changes, including loss of filopodia and
lamellipodia in association to decreased cell motility [46].
Thus, the development of specific MAPK pathway inhib-
itors is currently in process [47].

2.3 The ErbB activation pathway

Overexpression of c-erbB-2 protein in tumors has been
reported from approximately 25 % of patients with epithelial
OVC [48,49]. Multivariate analysis showed that c-erbB-2
overexpression and residual tumors, greater than 2 cm, de-
crease survival rates [48,49].

2.4 The Mullerian inhibitory substance receptor pathway

Anti-Müllerian hormone (AMH) is a member of the trans-
forming growth factor β (TGF-β) family In absence of
AMH, Müllerian ducts of both sexes develop into uterus,
Fallopian tubes, and the upper part of the vagina. Also,
AMH exerts inhibitory effects on the differentiation and
steroidogenesis of the immature ovaries, the follicle of adult
ovaries and as well as fetal and postnatal Leydig cells. Other
proposed targets of AMH actions include breast, prostate,
ovarian, and uterine cancer cells [50].

2.5 Lysophosphatidic acid signaling pathway

Lysophosphatidic acid (LPA) is generated through hydrolysis
of lysophosphatidyl choline by lysophospholipase D/auto-
taxin or via hydrolysis of phosphatidic acid by phospholipase
A2 or A1. LPA is a ligand for at least four different heptahelical
transmembrane G protein-coupled receptors (GPCR; LPA1/
endothelial differentiation gene (Edg)2, LPA2/Edg4, LPA3/
Edg7, and LPA4/GPR23/P2Y9) results in activation of at least
three distinct G protein subfamilies (Gq, Gi, G12/13) and
initiation of multiple signaling pathways, including Ras/
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Raf/mitogen-activated protein kinase, phosphoinositide-
3-kinase/Akt, phospholipase C/protein kinase C, or
RhoA small GTPase signaling [51]. Activation of these
G-proteins stimulates release of cell surface metalloproteases,
like the ADAM family, inducing subsequently cleavage of
EGF-like ligand precursors and thus EGFR (HER/erbB)
family of. This transactivation process seems to involve
many signaling pathways, e.g., mitogen-activated protein
kinase (p38 and p44/42), protein kinase C or c-Src. LPA
induces cancer cell proliferation, survival, drug resistance,
invasion, opening of intercellular tight junctions and gap
junction closure, cell migration, or metastasis [51].

2.6 Phosphatidylinositol 3-kinases pathway

The phosphoinositide 3-kinase (PI3K)/AKT pathway is a
key component of cell survival and is implicated in OVC
cell motility, adhesion, and contributes to metastatic/inva-
sive phenotypes of various cancer cells. PI3K was also
reported to be involved in cell growth and transformation.
Its effect is related to indirect or direct deregulation of its
signaling pathway and causes aberrant cell-cycle progres-
sion and transformation of normal cells into tumor cells.
Due to hyperactivation of the PI3K/Akt pathway in many
cancers and its role in multiple aspects of cancer progres-
sion, inhibition of the PI3K/Akt signaling pathway has been
investigated as a treatment for cancer [52]. A proof of
concept is based on the loss of function of inositol poly-
phosphate 4-phosphatase type II (INPP4B) from the PI3K/
Akt pathway acting as a tumor suppressor. Remarkably, loss
of INPP4B in ovarian cancer correlates with poor patient
outcomes [52].

2.7 Estrogen receptors pathway

The mitogenic action of estrogen seems to be critical to the
etiology and progression of human gynecologic cancers
[53,54]. Estrogens influence the growth, differentiation,
and function of reproductive tissues by interacting with their
receptors to mediate various signaling pathways associated
with the risk of ovarian cancer [53,54]. Estrogen receptors

exist in two forms, estrogen receptor alpha (ERα) and
estrogen receptor beta (ERβ) which is the predominant
estrogen receptor in the ovaries [26]. Recent in vivo and in
vitro studies suggest that ERβ is involved with the control
of cellular proliferation, motility and apoptosis in ovarian
cancer; and loss of ERβ expression is associated with tumor
progression [55,56].

Taken together, the above studies reveal that all these
signaling pathways are implicated in OVC cell differentia-
tion, cell movement and apoptosis, and are directly linked to
OVC tumor suppressor genes and oncogenes (Table 1). At
this moment, it is relevant to establish a link between these
signaling pathways and proteins specific to OVC cells pre-
viously identified by classical proteomic studies or mass
spectrometry imaging (MSI).

3 Proteomic studies

Since the last decade, proteomic studies have been widely
used to identify key proteins implicated in different ovarian
cancer processes. Using these new technologies, many
authors identified panels of biomarkers and tested these for
their relevant utility to screen early stages of the disease.
Candidate biomarkers have been detected in serum or tis-
sues using SELDI chips analysis. From this method, a
biomarker, the alpha chain of haptoglobulin, has been iden-
tified and found in higher levels in samples from OVC
patient [57]. Then, a protein pattern has been determined
by Yu et al. [58] with 96.7 % specificity, 96.7 % sensitivity,
and a predictive positive value of 96.7 %. Another group
reported the use of the following markers: transthyretin,
beta-hemoglobin, apolipoprotein A1, and when used in
combination with CA 125, has been found to have a ROC
of 0,959 for the detection of ovarian cancer, when CA 125
used alone 0.613 [59]. Two separate classical proteomic
studies in 2006 [60] and 2008 [61], using liquid chromatog-
raphy (LC) separation followed by MS (LC-MS), have
shown that early and late stage endometroid ovarian carcino-
ma MS profiles can be distinguished using a clustering anal-
ysis, which separates profiles based on feature similarity; in

Table 1 The genetic polymorphism of the OVC

Gene classification Tumors suppressors Oncogenes

ARHI, RASSF1A, DLEC1, SPARC, DAB2,
PLAGL1, RPS6KA2, PTEN, OPCML, BRCA2,
ARL11, WWOX, TP53, DPH1, BRCA1, PEG3

RAB25, EVI1, EIF5A2, PRKCI, PIK3CA,
MYK, EGFR, NOTCH3, KRAS, ERBB2,
PIK3R1, CCNE1, AKT2, AURKA

Gene modulation Amplification Mutation Hypermethylation Deletion

Activation RAB25, PRKCI, EVI1 and
PIK3CA, FGF1, MYC,
PIK3R1 and AKT2, AURKA

KRAS, BRAF, CITNNB1,
CDKN2A, APC, PIK3CA,
KIT, SMAD4

IGF2, SAT2

Deletion BRCA1, BRCA2,
PTEN, TP53

MUC2, PEG3, MLH1,
ICAM1, PLAGL1, ARH1

BRCA1, BRCA2, PTEN,
TP53, PEG3, PLAGL1, ARHI
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this case, similar protein masses. These studies demonstrate
that “classical” proteomics can generate molecular finger-
prints of a disease. However, the disadvantage of this method
is the loss of molecular discrimination of tissues subtypes
regarding the anatomical context. This effect can be seen in
heterogeneous carcinomas where different structural elements
express specific proteome. Laser capture micro-dissection
(LCM) is one of the techniques used to solve this problem/
inconvenient, but this method is time consuming and based on
cells phenotypes rather than the molecular content of the cells.
MALDI mass spectrometry imaging (MSI) keeps the spatial
localization of the markers and discriminates cells to theirs
molecular content. Using this technology, our group has been
able to discriminate several novel biomarkers in ovarian can-
cer (Fig. 3 [62,63]) e.g., the C-terminal fragment of the immu-
noproteasome 11S, Reg alpha or mucin 9. In 2010,
Hoffmann's team was able to identify 67 proteins, using this
technology on formalin-fixed paraffin-embedded (FFPE) ar-
chived ovarian tissue [64,65]. In sum, proteomic studies per-
formed at the level of the serum, ascites, and tissues have also
clearly shown the presence of protein associated the intracel-
lular signaling pathways activation, i.e., protein associated
with cell proliferation, signaling to skeleton, invasion, resis-
tance (Table 2).

3.1 Proteins associated with cell proliferation

The protein family S100 has been previously detected in
aggressive ovarian tumors [66] and more specifically, S100
A11 and S100 A12 proteins have been identified by
MALDI-MSI [67]. S100 A11 has been detected in ovarian
ascites [68] and this protein (or calgizzarin) is known to
regulate cell growth through the inhibition of DNA synthe-
sis [69,70]. S100 A12 is known to promote leukocyte mi-
gration in chronic inflammatory responses [71]. The
expression of oviduct-specific glycoprotein (OGP, Mucin-9),
a marker of normal oviductal epithelium has also been
reported in conjunction with S100 proteins and cytoskeleton
modifying proteins [67]. Supportive data were provided by
Woo and associates who found that OGP is a tubal differen-
tiation marker and may indicate early events in ovarian carci-
nogenesis. These data also support the hypothesis, recently
reported, of oviduct ascini as the origin of serous ovarian
carcinoma [1]. From immune components, stromal cell-
derived factor-1 (SDF-1), induces proliferation in OVC by
increasing the phosphorylation and activation of extracellular
signal-regulated kinases (ERK)1/2, which correlates to epi-
dermal growth factor (EGF) receptor transactivation. Similar-
ly, TGF-β produced by Treg cells stimulates tumor cell
proliferation, increases matrix metalloproteinase's (MMP)
production, and enhances invasiveness of OVC cells
[72–76]. In OVC, IL7 has been found in ascites and plasma,
and it's acting as a growth factor like in breast cancer [77–79].

Table 2 Biomarkers identified by genomic, classical proteomic, or
MSI approaches

Genomic Proteomic MALDI
imaging

Marker name

Mesothelin-MUC16 [192]

STAT3 [192]

LPAAT-β (lysophosphatidic
acid acetyl transferase beta)

[193]

Inhibin [194]

Kallikrein Family [9,11,13,14] [195] [67]

Tu M2-PK [196]

c-MET [197–199]

MMP-2, MMP-9, MT1-MPP:
matrix metalloproteinase

[158,200,201] [67]

EphA2 [202–204]

PDEF (prostate-derived
Ets factor)

[116,205]

IL-13 [177]

MIF (macrophage inhibiting
factor)

[116,205]

NGAL (neutrophil gelatinase-
associated lipocalin)

[206] [67]

CD46 [207–209]

RCAS 1 (Receptor-binding
cancer antigen expressed
on SiSo cells)

[117,210]

Annexin 3 [211]

Destrin [212,213]

Cofilin-1 [214]

GSTO1-1 [212,213]

IDHc [212,213]

FK506 binding protein [215]

Leptin [216,217]

Osteopontin [211]

Insulin-like growth factor-II [218]

Prolactin [219]

78 kDa [220]

glucose-regulated

Protein

Calreticulin [220]

Endoplasmic [220]

reticulum protein ERp29

Endoplasmin [220]

Protein disulfideisomerase [220]

A3

Actin, cytoplasmic 1 [220]

Actin, cytoplasmic 2 [220]

Macrophage [220]

capping protein

Tropomyosin [220]

alpha 3 chain, alpha-4 chain

Vimentin [220] [67]

Collagen alpha [220]
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pDcs are also present in tumor environment and stimulate
tumor growth by releasing TNF-α and IL8. The sum of these
data reflects that cytokines exert pleiotropic effects in OVC
and exert a major role in tumor proliferation.

3.2 Signaling to the cytoskeleton

Several candidate proteins, including profilin-1, cofilin-1,
vimentin, and cytokeratin 19 are involved in the intracellular

Table 2 (continued)

Genomic Proteomic MALDI
imaging

1(VI) chain

Dihydrolipoyllysineresidue [220]

succinyltransferase

component of 2-oxoglutarate

Dehydrogenase

Pyruvate [220]

dehydrogenase E1

component beta

Superoxide [220]

dismutase [Cu-Zn]

Chromobox protein [220]

homologue 5

Lamin B1, B2 [220]

14-3-3 protein [220]

Cathepsin B [220]

Heterogeneous [220]

nuclear

ribonucleoprotein K

Nucleophosmin [220]

Peroxiredoxin 2 [220]

Prohibitin [220]

Receptor [220]

tyrosine-protein

kinase erbB-3

Fibrinogen gamma [220]

Chain

Splicing factor, arginine/
serine-rich 5

[220]

Elongation factor [220]

1-beta

Lysosomal protective protein [220]

Hemoglobin beta [220]

subunit

Transitional endoplasmic [220]

reticulum ATPase

Serum albumin [220]

Protein KIAA0586 [220]

Similar to testis expressed
sequence 13A

[220]

SNRPF protein [220]

Fibrinogen gamma chain [220]

Transitional endoplasmic
reticulum ATPase

[220]

Heat shock 70 kDa protein
1, 60 K protein

[220]

Heterogeneous nuclear
ribonucleoprotein K

[220]

Keratin, type I cytoskeletal
7, 9, 18, 19 ?

[220] [67]

Adenylosuccinate Lyase [220]

Table 2 (continued)

Genomic Proteomic MALDI
imaging

Peroxiredoxin 2 [220]

Glutathione S-transferase P [220]

Ras-related protein [220]

Rab-7

Prohibitin [220]

Cathepsin B [220]

Heterogeneous nuclear [220]

ribonucleoprotein K

Tumor protein D54 [220]

Rho GDPdissociation [220]

inhibitor 1

Annexin A2 [220]

ATP synthase beta Chain [220]

Heterogeneous nuclear
ribonucleoprotein K

[220]

Actin, cytoplasmic 1 [220]

Heterogeneous nuclear
ribonucleoprotein A/B

[220]

Immunoprotease activator
fragment 11 S

[62]

Mucin-9 [67]

Tetranectic [67]

Urokinase plasminogen activator [67]

Orosomucoid [67]

S100-A2 [67]

S100-A11 [67]

Apolipoprotein A1 [67]

Transgelin [67]

Prolargin [67]

Lumican Precursor [67]

Siderophilin [67]

Alpha 1 antiprotease [67]

Phosphatidyl Ethanolamine
Binding Protein

[67]

Hemopexin [67]

Profilin -1 [67]

HLA G [1]

Chorionic Gonadotropin
Hormone

[1]
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signaling to the cytoskeleton. Changes in cell phenotypes,
such as the conversion of epithelial cells to mesenchymal
cells, are integral, not only to embryonic development, but
also to cancer invasion and metastasis. Cells undergoing
epithelial–mesenchymal transition (EMT) lose their epithe-
lial morphology, reorganize their cytoskeleton, and acquire a
motile phenotype through the up- and downregulation of
several molecules, including tight and adherent junction
proteins and mesenchymal markers. TGF-β has been de-
scribed to induce EMT in ovarian adenosarcoma cells [80].
In the human lung adenocarcinoma cell line A549, this
differentiation is followed by modification in the expression
of several cytoskeleton proteins including β-actin, cofilin 1,
moesin, filamin A and B, heat-shock protein beta-1,
transgelin-2, S100 A11, and calpactin. Most likely, these
changes increase migratory and invasive abilities [81].
Treatment of the OVC cell line SKOV-3 with TGF-β
increases the expression of cofilin and profilin-1 at mRNA
and protein levels and modifies its cytoskeletal organization
assessed by confocal microscopy analysis [76]. After bind-
ing to its receptor, TGF-β stimulates the reorganization of
the actin cytoskeleton and triggers the formation of stress
fibers and cellular protrusions [82].

3.3 Hormonal pathways

Several hormones have been detected during proteomic
studies like leptin, prolactin, osteopontin, insulin-like
growth factor-II, anti-mullerian hormone, and HCG [83].
Leptin is produced by adipocytes and known to stimulate
the growth of BG-1 ovarian cancer cells via the extracellular
signal-regulated kinase signaling pathway. Recent studies
have demonstrated the involvement of the estrogen receptor
(ER) pathway in the mechanism of leptin-induced OVC
growth via STAT-3 [84]. Elevated seric levels of prolactin
(PRL) in ovarian and endometrial cancers have been
reported, indicating a potential role for PRL in carcinogen-
esis [85]. Binding of PRL to its receptor was followed by
rapid phosphorylation of extracellular signal-regulated ki-
nase (ERK) 1/2, mitogen-activated protein kinase/ERK ki-
nase 1, signal transducer and activator of transcription 3,
CREB, ATF-2, and p53 and activation of 37 transcription
factors in ovarian and endometrial carcinoma cells. Osteo-
pontin (OPN) is known to increase the survival of OVC
under stress conditions in vitro and promotes the late pro-
gression of ovarian cancer in vivo. The survival-promoting
functions of OPN are mediated through Akt activation and
the induction of HIF-1alpha expression [86]. Insulin-like
growth factor binding protein 2 (IGFBP2) is also overex-
pressed in ovarian malignant tissues and in the serum and
cystic fluid of ovarian cancer patients, suggesting its important
role in the biology of ovarian cancer by increasing invasion
capability of ovarian cancer cells [87]. HCG is a glycoprotein

consisting of subunits alpha and beta, which are non conva-
lently linked. The hormone is normally produced by the
syncytiotrophoblastic cells of the placenta and is elevated
during pregnancy. Recently, beta-hCG and alpha-fetoprotein
have been detected in OVC germ cell tumors [88,89]. These
proteins have been detected at early stages of the cancer, as
well as lysophosphatidic acid, mesothelin, HE4, osteopontin,
VEGF, IL-8, M-CSF, different kallikreins [90–92], and the C-
terminal fragment of the 11S immunoproteasome (Reg-alpha)
[1,67].

Most of the above proteins are directly linked to signaling
pathways for cytoskeleton remodeling, contractility, junc-
tion remodeling, adhesion, invasion, migration, cell cycle
progression, proliferation, metastasis, apoptosis/necrosis,
angiogenesis, endothelial permeability, vascular remodel-
ing, metalloprotease activation, and EGFR transactivation
(Fig. 1). The immune response modulation is another dys-
regulated cell signaling pathway found in OVC. In fact,
cancer cells use various strategies to escape from the im-
mune response. In this context, it is interesting to link
activated intracellular signaling pathways to the proteins
involved in immune response escape.

3.4 Proteins involved in immune response modulation

Several hepatic and acute phase proteins (haptoglobin-α,
bikunin, C-reactive protein), cytokines and growth factors
(vascular endothelial growth factor—VEGF, insulin-like
growth factor II—ILGF II, IL-6, IL-10, macrophage-
colony stimulating factor—M-CSF, osteopontin, macro-
phage inhibitory factor) have been detected in OVC. How-
ever, recent studies have shown that ovarian cancer-
associated ascites may provide an immunosuppressive en-
vironment [77]. A high CD4/CD8 ratio, which may indicate
the presence of regulatory T cells, is associated with poor
outcomes. Recently, Clarke et al. [93] have validated in a
cohort of 500 ovarian cancer patients that the presence of
intraepithelial CD8+ T cells correlates with improved clin-
ical outcomes for all stages of the diseases. Curiel et al. [94]
demonstrated in 104 ovarian cancer patients that CD4+
CD25+FoxP3+Tregs suppress tumor-specific T cell immu-
nity and contributes to growth of the tumor in vivo. These
data suggest a mechanism of immune suppression in ovarian
cancer either through overexpression of Tregs or by the
capability of tumors to escape from the immune response
(using molecular mimicry) or immunosurveillance [95,96].
Additional evidences have reinforced the involvement of
Tregs in ovarian cancer. CCL22, a protein secreted by
dendritic cells and macrophages, highly expressed in tumor
ascites is known to have a role in Treg cell migration in
tumors [94]. Overexpression of the immunoregulatory en-
zyme indoleamine 2,3-dioxygenase (IDO) has also been
demonstrated in ovarian cancer [97–100]. IDO suppresses
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the proliferation of effector T cells or natural killer cells and
their killer functions [98,101]. In ovarian cancer, high IDO
expression in tumor cells was correlated with a reduced
number of tumor-infiltrating lymphocytes [97]. Reduced
IL-2 combined to elevated TGF-β and IL-10 levels favor
induced Tregs [102]. On the other hand, tumor cells escape
the immune response by inducing peripheral mature DCs to
induce IL-10 CCR7+CD45RO+CD8+Tregs. Primary sup-
pressive CCR7+CD45RO+CD8+ T cells are found in the
tumor environment of patients with ovarian cancer [103].
Another way that tumor cells escape immunosurveillance is
through the expression of human leukocyte antigen (HLA-
G) ([104–106]{Sheu, 2007 #5782). Recent studies have
shown that the expression of HLA-G was detected in 22/
33 (66.7 %) primary tumor tissues but was absent in normal
ovarian tissues (P<0.01). Cytotoxicity studies showed that
HLA-G expression dramatically inhibits cell lyses by NK-
92 cells (P<0.01), which could be restored by the anti-
HLA-G conformational mAb 87 G (P<0.01). HLGA-G5
type has been detected in tumor while soluble form of
HLA-G was found in ascites [107,108] and in the blood of
patients [109]. HLA-G seems to be implicated in the immune
response modulation through NKTcell inhibition [110]. In the
tumor cells expressing a B7 co-stimulatory family molecule,
B7H4 is known to inhibit antigen-dependent induction of T
cell proliferation and activation. B7-H4 promotes the malig-
nant transformation of epithelial cells by protecting them from
apoptosis and seems to be expressed at an early stage of tumor

development [111–113]. In the same way, tumor cells highly
express the mesothelin-Mucin 16 (MUC16), which inhibits
the formation of immune synapses between NK cells and
ovarian tumor targets [114] (Fig. 2).

Transcriptomic and proteomic studies performed at the
tumor level confirmed the active role of the tumor cells to
escape from the immune response. For example, the over-
expression of the macrophage migration inhibitory factor
(MIF) [115,116] and the receptor-binding cancer antigen
expressed on SiSo cells [117] (known to be implicated in
lymphocytes apoptosis), were shown using transcriptomic
approaches MIF contributes to the inhibition of antitumoral
CD8+ T and NK cells by downregulating NKG2D levels
(NK cell receptor NK group 2D). [118]. From MALDI-MSI
studies, five factors involved in immune response modula-
tion in mucinous tumors have been identified, namely a C-
terminal fragment of the 11S immunoproteasome (Reg-alpha),
orosomucoid, apolipoprotein A1, hemopexin, and lumican,
which have also been detected in ascites [62,63,67,119,120].
Cleavage of PSME1 (proteasome activator complex subunit 1,
11S regulator complex [syn: PA28 alpha]) into the Reg-alpha
fragment could lead to default self-antigen presentation [62]
(Fig. 3). PA28 is a regulatory complex associated with 20S
proteasome that consists of three subunits: alpha, beta, and
gamma [121]. Binding of the 11S regulator complex to the
20S proteasome does not depend on ATP hydrolysis and,
unlike the 19S regulatory subunit, the 11S regulator complex
does not catalyze degradation of large proteins. Rather, it is

Fig. 1 Ovarian cancer
intracellular signaling pathways
scheme. LPA/hormones bind to
RPCG receptors. Cytokines/
growth factors bind RTK
receptors. Intracellular
pathways and signaling out
are detailed. Cellular output
after signaling pathways
activation are presented
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responsible for MHC-class l antigen processing [122–124],
which is greatly improved by interferon gamma-induced ex-
pression of the alpha and beta subunits [125]. Several viral
proteins that interact with these proteasome subunits have been
reported and may interfere with host anti-viral defenses, there-
by contributing to cell transformation [126]. The manner in
which they bind to the core particle (via its subunits C-terminal
tails) and induce a α-ring conformational change (to open the
20S gate), suggests a mechanism similar to the 19S particle
[121]. No role in ovarian cancer has been demonstrated for the
11S regulator complex. Our data demonstrate a high expression
level of PA28 in carcinomas, especially in epithelial cells at
stage III/IV (Fig. 3a,b), also at early stages Ia (Fig. 3c) [1] and
as a marker of tumor relapse after chemotherapy (Fig. 3d). The
PA28 activator belongs to the antigen processing machinery
(APM). Its alteration by cleavage in ovarian carcinomas may
be a mechanism to evade immune recognition. Similar hypoth-
esis has already been proposed in the case of APM chaperones
such as TAP, LMP2, LMP10, and tapasin in colon carcinoma,
small cell lung carcinoma, and pancreatic carcinoma cell lines.
In fact, IFN-γ treatment of these carcinoma cell lines corrects
the TAP, LMP, and tapasin deficiencies and enhances PA28α,

LMP7, calnexin and calreticulin expression, which is accom-
panied by increased levels of MHC class 1 antigens [127].
PSEM2 (proteasome activator complex subunit 2, PA28 beta)
has also been detected in ascites fluid, implicating an immune
cell tolerance toward carcinoma cells and confirms the dysre-
gulation of self-antigen processing in ovarian tumors [68].
Additionally, PA28 alpha seems to be a target for Epstein-
Barr virus (EBV) and herpes virus (HV), as our proteomic
and qPCR data indicates [128,129]. Pudney et al. [130] have
also shown that as EBV-infected cells move through the lytic
cycle, their susceptibility to EBV-specific CD8+ T cell recog-
nition falls dramatically, concomitant with a reduction in trans-
porter associated with antigen processing (TAP) function and
surface human histocompatibility leukocyte antigen (HLA)
class 1 expression. The implication of virus in the etiology of
ovarian cancer is also sustained by the over-expression of furin
enzyme [1,67], which is known to be implicated in glycopro-
tein B cleavage through a motif R-X-K/R-R in both EBV and
HV [128,129].

Among the other four factors that might participate in the
tolerance phenomenon by inhibiting immune activation, the
acute phase protein orosomucoid (ORM, also known as

Fig. 2 Tumor cell factors production for escaping immune response.
Apolipoprotein A1 has been detected in conjunction with transthyretin
and transferrin in early-stage mucinous tumors. Lumican, which is a
small LRR proteoglycan in the extracellular matrix is known to be
overexpressed in breast cancer and to play a role in tumor progression.
ApoA-I is known to decrease expression of surface molecules such as
CD1a, CD80, CD86, and HLA-DR in dendritic cells, and it stimulates
the production of IL-10. Hemopexin has recently been demonstrated to
reduce TNF and IL-6 from macrophages during inflammation, and it
limits TLR4 and TLR2 agonist-induced macrophage cytokine

production. Orosomucoid have immunosuppressive properties in ovar-
ian carcinoma ascites through inhibition of IL-2 secretion by lympho-
cytes. The tumor environment expresses molecules that can convert
functional APCs into dysfunctional ones. These dysfunctional APCs in
turn stimulate Treg differentiation and expansion.The tumor produces
IL6, IL8, MUC18, MIF, RCAS1, sHLA-G exerting negative effects on
the T cells.PA28 activator belongs to the antigen processing machinery
(APM). Its alteration by cleavage by (furin, PACE4) in ovarian carci-
nomas participates in a mechanism to evade immune recognition
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alpha1-acid glycoprotein or AGP), which is normally in-
creased in infection, inflammation and cancer, seems to
have immunosuppressive properties in ovarian carcinoma
ascites through inhibition of IL-2 secretion by lymphocytes
[131]. Similarly, apolipoprotein A1 has been detected in
conjunction with transthyretin and transferrin in early-
stage mucinous tumors [132]. ApoA-I is known to decrease
expression of surface molecules such as CD1a, CD80,
CD86, and HLA-DR in dendritic cells and stimulates the
production of IL-10 [133] (Fig. 2). Interestingly, hemopexin
has recently been demonstrated to reduce TNF α and IL-6

from macrophages during inflammation and limits TLR4
and TLR2 agonist-induced macrophage cytokine production
[134]. In SKOV-3 epithelial ovarian carcinoma cells, all
TLRs are overexpressed with the exception of TLR9 and
TLR10 [1]. This is in line with the overexpression of lumi-
can, which is a small LRR proteoglycan in the extracellular
matrix. Along with other proteoglycans, such as decorin,
biglycan, and prolargin, lumican is known to be overex-
pressed in breast cancer and playing a role in tumor pro-
gression [135,136]. However, as demonstrated for biglycan,
which interacts with TLR2/4 on macrophages [137,138], we

Fig. 3 Example of MALDI MSI and profiling workflow for ovarian
cancer biomarker discovery and validation: a MALDI mass spectrom-
etry profiling spectra of six patients, i.e., three suffering of adenocar-
cinoma and three benign tumors. The m/z at 9744 corresponds to the
Cter fragment of RegAlpha. b Epithelial ovarian cancer tissue section
with a benign and a cancerous parts submitted to an automatic matrix
deposition using a micro spotting machine (CHIP 1000, Shimadzu).
Molecular image corresponding of the m/z 9744 Cter fragment of
RegAlpha in the tumoral area of the ovarian biopsy with inset pictures
of immunohistocytochemical validation of the presence of the biomarker
using an antibody designed against the Cter part of RegAlpha. c The
MALDI MS spectra of tissue extract from stage 1a serous OVC biopsies.
The C-terminal Reg-alpha fragment (m/z 9,744) is detected in the acini

cells. The inset shows fluorescent immunocytochemistry data using the
anti-C terminal Reg alpha fragment and hematoxylin and eosin (H&E)
staining of the tissue subjected to the MALDIMS profiling analyses (scale
bar 5 mm) [191]. d The MALDI MS spectra of the tissue extract from the
carcinoma regions of ten patients at different pathologic stages after neo-
adjuvant chemotherapy. Mass spectra analyses of extracts from stages I,
IIIc, and IV serous tumors after neoadjuvant chemotherapy. The ion with
an m/z ratio of 9774 corresponds to the C-terminal Reg-alpha fragment, is
found in each patient and is indicated by an arrow. These data confirm that
the C-terminal fragment of Reg alpha can be a good marker for the early
diagnosis of tumor relapse (all tissues came from patients collected after
neoadjuvant chemotherapy with 6 cycles of carboplatin/Taxol followed by
carboplatin with Caelyx before complete surgery) [191]
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speculate that lumican is also involved in the activation of
the inflammasome through TLR2/4 interaction. The activa-
tion of all danger-sensing receptors in carcinoma cells can
be explained through the regulation of inflammation by
carcinoma cells to facilitate tumor progression. In a sense,
this implies that ovarian cancer cells use molecular mimicry
as “parasites” to escape the immune response, as they pro-
duce immunosuppressors to achieve tolerance [139].

4 Specific mechanisms underlying ovarian cancer
metastasis

The clinical and biological behavior of epithelial ovarian
cancers differs from any other type of cancers. While the
dissemination of cancerous cells in other carcinomatous
afflictions requires the implication of vascular mechanisms
of intra- and extravasation for the migration from the pri-
mary site to distant organs, ovarian carcinoma metastasis is
a more passive event. Indeed, cells coming from the ovarian
tumor often migrate to peritoneal organs with the physio-
logical movement of peritoneal fluid but rarely create me-
tastasis outside the peritoneum. This passive clinical
mechanism is supported by some molecular changes in the
cell elements for its anchoring to the remote metastatic sites.
The surrounding cellular and tissular environment also pro-
motes hosting of the cells outside the ovarian tumor. The
first biological mechanism for cell migration is the epithelial–
mesenchymal transition (EMT) which facilitates the attach-
ment of neoplastic cells to new tissue sites [82] (Fig. 4). Due to
the lack of an anatomical barrier, ovarian carcinoma can
spread directly throughout the peritoneal cavity, mainly by
intra-abdominal dissemination and by lymphatic dissemina-
tion, enabling in this way the attachment to peritoneum and
omentum. This event is characterized by proteins' and genes'
modifications like epithelial intermediate filaments, whose
expression is typically reduced, and in the overexpression of
vimentin and matrix metalloproteases (MMPs). It has charac-
terized by alterations in the expression of cell-to-cell adherents
junctions and cell-matrix adhesion molecules including integ-
rins and E-N-cadherin E-cadherin [140,141] (Fig. 4). It has
recently also be validated that this event is related to an
elevation of the expression of the glycoprotein MUC 4
[142]. E-cadherins allow the junction between the filaments
of actin inside the cell and its cellular environment. This
deficiency allows the cells to initiate its detachment from the
tumor site. MUC4 is also associated to an elevation of other
cadherins [143] such as N-cadherins, but also other mesen-
chymal markers such as Vimentin [142], which are also
expressed and confer the cells an invasive phenotype. EMT
confers as well the ability of cells to evolve in unfavorable
conditions such as hypoxia [144]. Once the cell detached from
the tumor site, the peritoneal environment of ascites starts the

promotion of ovarian carcinoma cells proliferation and im-
plantation in peritoneal sites. Growth factors play a critical
role in motility and invasiveness of these cells where VEGF is
one of the principal factors [145] (Fig. 4). It acts through
EGFR, which has been proven to be overexpressed in 70 %
of carcinomas [146]. This process activates the MAPK path-
way, which in turn contributes to the lack of cell–cell junc-
tions. VEGF also activates the PI3K pathways, which
contributes to the localization of the matrix metalloproteinase
9 at the membrane surface for the cleavage of E cadherins
[147,148]. Moreover, VEGF stimulates ascite accumulation
by increasing diaphragmatic and tumor associated vasculature
[145,149]. Then, cancer cells can migrate through the perito-
neum as single cells or groups of multiple cells called spheroid
composed of multiple cells group. These spheroids present at
their surface α5β1 integrin, which play a role in these spher-
oid formation [150] and its ligand fibronectin, important for
spheroid growth. Other couples integrin/ligand exist such as
α6β1integrin/laminin and α2β1-integrin/type IV collagen,
which intervenes in the attachment of the spheroids with the
mesothelium of the peritoneum and the omentum [151]. In the
process of cellular invasion, proteolytic enzymes are manda-
tory in order to release the spheroids to the peritoneal envi-
ronment. Matrix metalloproteinase type I and II play this role
in the primary cancerization steps [152,153]. After the transit
in the peritoneum, cancerous cells acceed and attach to the
peritoneum, which is constituted by mesothelial cells with
collagen types I and IV, fibronectin and laminin. Coupled
integrins then act for the attachment. At this step, VCAM is
also a membrane protein at the surface ofmesothelial cells that
binds α4β1 integrin from the cancerous cells surface [154].
With the integrins, CD44 can also be an element of binding,
which attachs to hyaluronic acid [155]. Additionally, adhesion
molecules such as NCAM can promote ovarian cancer metas-
tasis via the interaction with receptors such as FGFR [156].
Proteolytic activity is a requested mechanism for cells attach-
ment since MMP-2, at the surface of cancer cells, cleaves
fibronectin and vitronectin (extracellular matrix proteins) into
smaller fragments to increase adhesion, respectively, with
α5β1 αvβ3 integrins [157,158]. Furthermore, host cells pro-
duce MMP9 to improve adhesion of cancerous cells [159].
Transglutaminases are another family of enzymes for cellular
adhesion, in which transglutaminase 2 plays a major role in
the relaxation of extracellular matrix and the regulation of
MMP2 [160]. Enzymes of the kallikrein family have also
been found to play a role in extracellular matrix degradation
[161] (Fig. 4).

The last phases of metastasis progression consist in the
final hosting of the cells groups in the peritoneal tissues.
This mainly consists in the recruitment of new blood vessels
within the host tissue in order to provide a complete nutri-
tional autonomy to the new tumor site. VEGFs are then
needed to stimulate vascular lymphatic endothelium in order
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to create new blood and lymphatic vessels. This process is
the very last step of metastasis, that's why the expression of
VEGF in ovarian carcinoma context is generally associated
to poor prognosis [162]. Periostin has also been explored for
its ability to require angiogenes, in addition to known effects
on EMT process [163].

As mentioned above, the environmental context provided
by the ascites is of great influence on properties of ovarian
cancer cells. It has been established that chemokines such as
CXCL12 induces migration, integrin expression, prolifera-
tion, and invasion [164]. CCL25–CCR9 interaction also
contributes to ovarian cancer migration, metalloprotease
expression, and invasion [165]. The hosting tissue is partic-
ularly important for metastasis efficiency since adipocytes

of the omentum, which is a common site for ovarian tumor
dissemination, can interact with the cells groups by adipo-
kines such as IL8. IL8 can mediate homing, migration, and
invasion of ovarian cancer cells. Besides, adipocytes can
induce β-oxidation in cancer cells. Finally, the fatty-acid-
binding protein 4 has been found to be overexpressed and
plays a key role in ovarian cancer cells [166]. The cellular
context in the peritoneum is also of high relevance. For
example, cancer-associated fibroblasts (CAF) promote an-
giogenesis and lymphangiogenesis, tumor progression and
metastasis by secreting different growth factors in the peri-
toneal environment [167].

Recent “omics” studies aimed to explore the complete
molecular aspects of ovarian cancer metastasis.

Fig. 4 Schematic illustration of E-cadherin, SIP1, Snail, Slug, and
Twist during ovarian progression. A model has been proposed by Shih
and Kurman in 2004 to explain ovarian cancer progression [83]. In this
model, epithelial ovarian tumors have been classified into two broad
categories: type I tumors including low-grade serous carcinomas, mu-
cinous, endometrioid, and clear cells carcinomas seem to develop from
their precursors, namely borderline ovarian tumors (BOTs), in a step-
wise manner; type II including high-grade serous malignancies develop
from the OSE or inclusion cysts without a common precursor.OSE
cells covering the ovarian surface do not express E-cadherin but are
positive for Snail and Twist expression. As depicted, E-cadherin ex-
pression changes during ovarian cancer progression showing an in-
verse correlation compared to SIP1, Snail, Slug and Twist expression.
The zoom corresponds to A simplified overview of signalling network

regulating EGF-induced EMT. In OSE cells, activation of the EGF
receptor tyrosine kinases (RTKs) by EGF results in activation of the
phosphatidylinositol 3-kinase (PI3K), which activates ILK and ERK
pathways. EGF treated OSE cells display a molecular signature char-
acteristic of EMT and are less likely to undergo a conversion in
inclusion cysts. JAK/STAT3 pathway is required to induce EMT in
ovarian cancer cells. Ovarian cancer cells that undergo EMT lose the
expression of E-cadherin and NGAL and show an increased motility
[82]). Pictures illustrate human epithelial ovarian cancer cell line
SKOV3 treated with (b) or without (a) TGF-β (10 ng ml−1). a Control
cells have a typical epithelial-like morphology in culture flask/Petri
with the tendency to form dense colonies. The filamentous actin
cytoskeleton shows circumferential organization. b Protusive struc-
tures and actin stress fibers are clearly visible only in treated cells
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In 2010, Xu team established an in vivo model of ovarian
cancer metastasis by injecting the well-known SKOV-3 cell
line in nude mice peritoneum [168]. Then, serum proteins of
the mice were analyzed by LC-MS/MS. Thirteen human
proteins were identified, including three proteins that were
highly relevant biomarkers for ovarian cancer metastasis.
These candidates were tested for their relevance in blood
screening of biomarkers by ELISA assays for patients with
different stages of cancer progression. 14-3-3 zeta was
found to have 90 %, 82.5 %, 72 %, and 94.3 % sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV), respectively, for stage I and stage
II patients. 14-3-3 zeta is an adaptor protein that binds to
other upstream or downstream signaling molecules containing
tandem repeats of phosphoserine motifs [169,170] and has
been found to form a ternary complex with integrin alpha-4 to
accelerate cell migration [171]. This study highlights that
metastasis of ovarian cancer is an early event since a protein
involved in this behavior can be detected as a biomarker for
early ovarian cancer. In another study, another member of the
14-3-3 familly, 14-3-3 sigma, has been found to protect the
cancer against oxidative stress by inducing an insensitiveness
of the cells to high O2 concentrations [172].

In 2011, Kakar team aimed for insights into the “metab-
olome” of ovarian cancer using GC/MS-TOF [173]. By this
approach, they have been able to deduce the metabolic
pathways involved in ovarian cancer metastasis behavior.
This study revealed that ovarian cancer metastasis have
altered carbohydrate metabolism. The ovarian cancer meta-
static cells prefer to use glucose for anaerobic glycolysis
instead of oxidative phosphorylation for the generation of
ATP. This was revealed by an increased level of lactate.
Fucose was also increased, coinciding with the elevated
glycoproteins in ovarian cancer cells. Also, stimulation of
proliferation has been related to the overconcentration of
phenylactates. Antioxidants have also been found such as
tocopherols and glutathione, concording with previous stud-
ies of protective behavior of ovarian metastatic cells against
oxidative stress.

Recently, using MALDI mass spectrometry imaging cou-
pled to on tissue microproteomics, we discovered in ovarian
carcinoma proteins involved in metabolic processes partic-
ularly over-expressed like the pyruvate kinase isoenzyme
M1/M2 (PKM2), the Vitamin D binding protein isoform 2
(DBP), the vitamin K epoxide reductase complex subunit 1
(VKORC1), the fatty acid-binding protein (FABP), the
coactivator of PPAR-gamma-like proteins (Longuespéee
unpublished data). These results reinforced the close corre-
lation between proteome and metabolome expression during
ovarian cancer metastasis.

Clearly, the results prove that novel tools, combined with
appropriate models could be used to understand the specific
mechanisms required for ovarian cancer metastasis.

5 Relevant biomarkers for clinical diagnosis of ovarian
cancer

Amongst the molecules discovered and integrated in the
understanding of OVC process mechanisms, some have
been evaluated for their clinical relevance. In this part of
the review, we have summarized the most promising
markers that could be used for OVC screening in women
populations. To date, CA 125 is the most widely used
marker for the disease screening. In normal physiological
conditions, ovary surface epithelium does not express CA
125 [174]. The level of seric CA 125 is considered as
normal when it is not higher than 35 U/mL [175]. Levels
higher than 35 U/mL are found in 90 % of patients with
advanced stage disease and in 50 % of stage I cancer
patients [176]. CA 125 is exclusively used to monitor the
effect of chemotherapies or targeted therapies on the dis-
ease. Thus, it is useless for the screening of large scale
supervision of the healthiness of postmenopausal women.

The detection of molecular factors for ovarian cancer
process was then undertaken in large cohorts of patients
and found to provide relatively good results for ovarian
cancer screening. Interleukin 13 (IL13) is a cytokine with
an inflammatory activity that plays important roles in many
biological activities. The level of this cytokine has been
measured and found more elevated in cancerous tissues
[177]. IL13 receptor is composed by two strands (ILA3Ra1
and IL13Ra2) and the second one has been found in high
levels in 44 of 53 of ovarian cancer samples [178]. A
cytotoxic therapy mediated by IL-13 have been designed
and tested in phase I/II clinical trial. This therapy showed an
antitumor activity and was very efficient when administered
intraperitoneally, since it blocks the spread of ovarian cancer
cells through the peritoneum in late stages of ovarian cancer
[178]. The serum macrophage inhibitory factor MIF have
also been tested for its presence in the blood of ovarian
cancer patients and a sensitivity of 77.8 % and a specificity
of 53.3 % were measured for this marker [116]. HE4 has
also been identified as a potential discriminator of ovarian
cancers [179]. This marker, tested in blinded studies on post
menopausal patients, was found to have similar discriminat-
ing characteristics to CA 125. Many markers were found to
be much more efficient for ovarian cancer discrimination,
when used in conjunction of CA 125. Macrophage-colony
stimulating factor (M-CSF) [180] has been used alone and
detected ovarian cancer with a specificity of around 61–
68 % and 93 % specificity [181], but the results for the
detection were better when used in conjunction with CA 125
[182]. Indeed, the use of either CA 125 or M-CSF enabled
the identification of 96–98 % of ovarian cancers and 81 %
of early stages [180]. Another marker, the lysophosphatidic
acid, has been reported to have a sensitivity of 100 % for
high stages cancers and 90 % for stage I cancers[183]. Some
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panels of biomarkers have also been proposed for high
sensitivity/specificity tests of ovarian cancer screening.
The use of the combination of 5 markers (CA 125, OVX1,
LASA, CA 15-3, CA 72-4) showed sensitivity of 90.6 %
and specificity of 93.2 %, when included in CART analysis
(classification and regression tree analysis), which is a
marker-based classification algorithm of the disease [184].
Four other markers (CA 125, CA72-4, CA 15-3, and PLA)
were found to have a sensitivity from 68 % to 87 % and the
same specificity as for CA 125 [185]. Thus, the use of
panels of biomarkers seems to be mandatory for biomarker
screening. This is particularly well illustrated by the study of
Leiser and coll. who proposed the use of six markers (leptin,
prolactin, osteopontin, IGFII, MIF, and CA 125) to discrim-
inate ovarian cancer and benign tissues with an accuracy of
89 % for early stages cancers and 100 % for late stage
disease. However, none of these markers used alone was
able to discriminate properly diseased and unaffected sam-
ples [186]. Recently, association of some of the markers
presented here, namely mesothelin, osteopontin, and HE4
have been selected by the Specialized Program of Research
Excellence (SPORE) committee for their good sensitivity
and specificity values [187].

6 Conclusion

This review attempts to link OVC genes polymorphisms to
cell signaling pathways which play a central role in cancer
cell growth, survival, invasion metastasis, and immune escape.

The integration of these OVC data, as a function of the grade
and tumor type, with specific sets of markers is impor-
tant in order to link the pathology with improved diag-
nosis and even for therapeutic benefits. The clinical
relevance of these OVC molecular factors then need to
be validated by large scale screening studies of patient
samples, with an emphasis on attempting to screen in
the early stages of the diseases. The development of
proteomic approaches in the field of biomarkers research has
greatly enhanced the discovery of relevant molecular markers
for multiple diseases. In the case of OVC, these new markers
could provide an alternative strategy to the actual CA 125
monitoring test.

In this review, we conclude that MALDI-MSI is one of
the most promising proteomic methods for biomarker dis-
covery, as it allows the direct analysis of tissue sections and
large scale screening of markers in their anatomical context.
The growing interest for MALDI-MSI in the proteomics
community is due to the increasing ease of use, great
accuracy, and statistical power, as it is now combined
with adapted statistical tools. MALDI-MSI may soon
become the primary approach for the biomarkers discovery.
In this review, we also conclude as to the difficulty in corre-
lating between predicting important genes in pathologies and
biomarker detection in tissue and in serum. Nevertheless, the
association multiplex panel of biomarkers has also been pro-
posed to increase the sensitivity/specificity testing of ovarian
cancer screening associated with CA125. Novel biomarkers
identified by MALDI-MSI, i.e., the C-terminal fragment of
Reg-alpha and Mucin 9 as well as specific viral signatures

Fig. 5 Molecular localization of three different ions on a FFPE tissue
section in the region Fimbria of the uterine tube. Histological section
after hematoxylin eosin-safran (HES) coloration (a). Ions images at a
spatial resolution of 50 μm with (b) or without (c) a superposition of

the histological image. Three specific molecules were localized in the
blood vessel (in red), in the mesothelium (in blue) and specific to the
cancer region (in green)
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(EBV, HHV6) may allow the assembly of more complete
biomarker panels for early ovarian cancer diagnosis. In order
to increase specificity, it will be necessary to take into account
not only protein biomarkers linked to cell modifications but
also the presence of specific viral proteins, the etiology of the
pathology (e.g., the Mullerian cell origin of ovarian serous
cancer) and their specific markers. Most ovarian carcinomas
associated with deleterious mutations BRCA1/2 appear to
derive from the tube, especially its fimbria. These cancers
are almost always high-grade serous ovarian, tubal, or
peritoneal. Given the ineffectiveness of current screening,
bilateral salpingo-oophorectomy is the preferred prophylactic
procedure. This procedure is not without consequences and in
view of pathogenesis data reviewed, it may be possible to
perform a temporary prophylaxis in the form of a bilateral
radical fimbriectomie. Recent histopathological studies
support the possibility of tumors forming at epithelial–
mesothelial junctions (peritoneal mesothelioma between
epithelium and Mullerian or between tubal epithelium
and tubal and ovarian mesothelium lining). This hypoth-
esis is in line with tumors cervix or the cardia which
are also “pathologies junction” between coatings of
different natures. The hypothesis of an abnormal spread
of cells on the cortical tubal or ovarian inclusion cysts,
and their development into carcinoma, is corroborated
by very recent biomolecular studies. They confirm the
expression by cancer cells of high-grade serous mullerian
markers (like the duct) but not mesothelium (such as ovarian
cortex) [188–190]. Hypothesis that can be drawn is the fact
that high-grade serous carcinoma would be a secondary
malignance of the ovary and not a primary ovarian
tumor Type 1 lesions will find their origin in the carci-
nogenesis of inclusion cysts post-ovulation, which, dur-
ing the healing of the breach ovarian tissue would then
reflect a Mullerian origin [188–190]. The type of carci-
noma depends on the origin of these Mullerian cells. It
is therefore necessary to integrate these notions in ovarian
cancer diagnosis and identify specific markers in relation with
these Mullerian cells. MALDI-MSI (Fig. 5) can offer versatile
and powerful methods to investigate these junctions, on
specimens of prophylactic oophorectomy or in fimbriectomies
with mutated BRCA 1/2, in order to detect early abnormalities
and help explain tumor development while identifying early
disease biomarkers.
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