Anisotropic material; Crystal plasticity; Finite elements; Swift effect; LIMARC
Abstract :
[en] FEM numerical simulations of the experimental free end torsion tests [Toth, L.S., Jonas, J.J.,
Daniel, D., Bailey, J.A., 1992. Texture development and length changes in copper bars subjected
to free end torsion. Textures Microstruct. 19, 245–262] of copper cylindrical bars were analysed in the present study. The self-made Finite Element (FE) code LAGAMINE was used to compute
numerical prediction of the Swift effect, i.e. the lengthening of the cylinder during the torsion.
The material behaviour was represented by an interpolation law [Habraken, A.M., Ducheˆne, L.,
2004. Anisotropic elasto-plastic finite element analysis using a stress–strain interpolation method
based on a polycrystalline model. Int. J. Plasticity 20 (8–9), 1525–1560] linked with a Taylor polycrystal plasticity model either based on a strain rate insensitive or a visco-plastic crystal plasticity model. The influence of texture evolution was analysed. A torsion dedicated remeshing technique was developed to allow very large strain simulations. Predicted axial lengthening and predicted textures were compared to experimental measurements. A good agreement was obtained for shear strain up to 2.0. The Swift effect related angular shift of the pole figure maxima from symmetrical orientations was reproduced correctly.
Disciplines :
Materials science & engineering
Author, co-author :
Duchene, Laurent ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Département Argenco : Secteur MS2F
El Houdaigui, Fouad
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
Language :
English
Title :
Length changes and texture prediction during free end torsion test of copper bars with FEM and remeshing techniques
Publication date :
2007
Journal title :
International Journal of Plasticity
ISSN :
0749-6419
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
Alves de Sousa R.J., Yoon J.W., Cardoso R.P.R., Fontes Valente R.A., and Gracio J.J. On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations. Int. J. Plasticity 23 3 (2007) 490-515
Berbenni S., Favier V., and Berveiller M. Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plasticity 23 1 (2007) 114-142
Beyerlein I.J., and Tomé C.N. Modeling transients in the mechanical response of copper due to strain path changes. Int. J. Plasticity (2006) 10.1016/j.ijplas.2006.08.00
Casotto S., Pascon F., Habraken A.M., and Bruschi S. Thermo-mechanical-metallurgical model to predict geometrical distortions of rings during cooling phase after ring rolling operations. Int. J. Mach. Tools Manufacture 45 (2005) 657-664
Castagne S., Pascon F., Bles G., and Habraken A.M. Developments in finite element simulations of continuous casting. J. Phys. IV 120 (2004) 447-455
Cescotto S. Finite deformation of solids. In: Hartley P., Pillinger I., and Sturgess C. (Eds). Numerical Modelling of Material Deformation Processes (1984), Springer-Verlag 20-67
Cescotto S., and Charlier R. Frictional contact finite element based on mixed variational principles. Int. J. Numer. Methods Engrg. 36 (1993) 1681-1701
Choi Y., Han C.-S., Lee J.K., and Wagoner R.H. Modeling multi-axial deformation of planar anisotropic elasto-plastic materials, Part I: Theory. Int. J. Plasticity 22 9 (2006) 1745-1764
Duchêne, L., 2003. FEM study of metal sheets with a texture based, local description of the yield locus. Ph.D. Thesis, University of Liège, Liège, Belgium.
Duchêne L., and Habraken A.M. Analysis of the sensitivity of FEM predictions to numerical parameters in deep drawing simulations. Eur. J. Mech. A/Solids 24 (2005) 614-629
Duchêne, L., Habraken, A.M., Godinas, A., 2000. Validation of a FEM model coupled with texture applied to deep drawing process. In: Proceedings of 3rd Int. Conf.: ESAFORM'00, Stuttgart.
Duchêne L., Godinas A., Cescotto S., and Habraken A.M. Texture evolution during deep-drawing processes. J. Mater. Process. Technol. (2002) 110-118
Duchêne, L., Delannay, L., Habraken, A.M., 2004. Finite element prediction of the Swift effect based on Taylor-type polycrystal plasticity models. In: Stören, S. (Ed.), Proceedings of the 7th Esaform Conference on Material Forming, Trondheim, p. 171.
Duchêne, L., de Montleau, P., El Houdaigui, F., Bouvier S., Habraken A.M., 2005a. Analysis of texture evolution and hardening behavior during deep drawing with an improved mixed type FEM element. In: Smith, L.M., Pourboghrat, F., Yoon, J-W., Stoughton, T.B. (Eds.), Proceedings of Int. Conf. NUMISHEET 2005, Melville (New York), 1, pp. 409-414.
Duchêne, L., El Houdaigui, F., Habraken A.M., 2005b. Finite element simulations of the Swift effect. In: Bariani, P.F. (Ed.), Proceedings of the 8th Int. Conf. on Technology of Plasticity, Padova (Italy).
Habraken A.M., and Bourdouxhe M. Coupled thermo-mechanical-metallurgical analysis during the cooling of steel pieces. Eur. J. Mech. A/Solids 11 3 (1992) 381-402
Habraken A.M., and Cescotto S. An automatic remeshing technique for finite element simulation of forging processes. Int. J. Numer. Methods Engrg. 30 (1990) 1503-1525
Habraken A.M., and Cescotto S. Contact between deformable solids, the fully coupled approach. Math. Comput. Modell. 28 4-8 (1998) 153-169
Habraken A.M., and Duchêne L. Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model. Int. J. Plasticity 20 8-9 (2004) 1525-1560
Habraken A.M., Charles J.F., Wegria J., and Cescotto S. Dynamic recrystallization during zinc rolling. Int. J. Form. Process. 1 (1998)
Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193 (1948) 281-297
Hughes T.J.R. Theoretical foundation for large-scale computations of nonlinear material behaviour. In: Nemat-Nasser S., Asaro R.J., and Hegemier G.A. (Eds). Proceedings Workshop on Theor. Foundation for Large-Scale Computations of Nonlinear Material Behaviour (1983), Martinus Nijhoff, Publisher, Dordrecht 29-63
Jonas J.J., Shrivastava S., and Toth L.S. The inverse Swift effect: experiments and theory. Acta Mater. 46 (1998) 51-60
Khan A.S., Lopez-Pamies O., and Kazmi R. Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int. J. Plasticity 22 4 (2006) 581-601
Li K.P., and Cescotto S. An 8-node brick element with mixed formulation for large deformation analyses. Comput. Methods Appl. Mech. Engrg. 141 (1997) 157-204
Miller M.P., and McDowell D.L. Modeling large strain multiaxial effects in fcc polycrystals. Int. J. Plasticity 12 7 (1996) 875-902
Miller M.P., and McDowell D.L. The effect of stress-state on the large strain inelastic deformation behavior of 304L stainless steel. ASME J. Engrg. Mater. Technol. 118 (1996) 28-36
Mosbah P., Shima S., Habraken A.M., and Charlier R. Numerical simulation of compacting process of a multi-steeped part with comparisons to experiments. J. Japan Soc. Powder Powder Metall. 46 (1999) 696-704
Munhoven S., and Habraken A.M. Application of an anisotropic yield locus based on texture to a deep drawing simulation. In: Shen S.E., and Dawson P.R. (Eds). Proceedings of the International Conference NUMIFORM 95 (Simulation of Materials Processing: Theory Methods, and Applications) (1995), Balkema, Rotterdam
Nadai A. Theory of Flow and Fracture (1950), McGraw-Hill, New York p. 349
Ponthot J.P. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. Int. J. Plasticity 18 (2002) 91-126
Poynting J.H. Proc. R. Soc. Lond. A 82 (1909) 546
Poynting J.H. Proc. R. Soc. Lond. A 86 (1912) 534
Qods F., Toth L.S., and Van Houtte P. Modelling of length changes and textures during free end torsion of cylindrical bars. Mater. Sci. Forum 495-497 (2005) 1609-1614
Rohatgi A., Jonas J.J., and Shrivastava S. Effect of stress-relief annealing on the inverse Swift effect in steel and iron. Script. Metal. Mater. 32 5 (1995) 737-741
Rose W., and Stüwe H.P. Z. Metall. 59 (1968) 396
Shrivastava S.C., Jonas J.J., and Canova G. Equivalent strain in large deformation torsion testing: theoretical and practical considerations. J. Mech. Phys. Solids 30 1-2 (1982) 75-90
Simo J.C., and Hughes T.J.R. On the variational foundations of assumed strain methods. J. Appl. Mech., ASME 53 (1986) 51-54
Swift H.W. Length changes in metals under torsional overstrain. Engineering 163 (1947) 253-257
Toth L.S., and Jonas J.J. Analytic prediction of texture and length changes during free end torsion. Textures Microstruct. 10 (1989) 195-209
Toth L.S., Gilormini P., and Jonas J.J. Effect of rate sensitivity on the stability of torsion textures. Acta Metall. 36 (1988) 3077-3091
Toth L.S., Jonas J.J., Gilormini P., and Bacroix B. Length changes during free end torsion: a rate sensitive analysis. Int. J. Plasticity 6 (1990) 83-108
Toth L.S., Szaszvari P., Kovacs I., and Jonas J.J. Shortening behaviour of drawn and twisted copper wires. Mater. Sci. Technol. 7 (1991) 458-464
Toth L.S., Jonas J.J., Daniel D., and Bailey J.A. Texture development and length changes in copper bars subjected to free end torsion. Textures Microstruct. 19 (1992) 245-262
Toth L.S., Qods F., and Fundenberger J.-J. Modeling of axial strain in free end torsion of textured copper. Z. Metall. 96 9 (2005) 1038-1043
Van Houtte, P., 1994. The 'MTM-FHM' software system, version 2, user's manual, KUL, Leuven.
Van Houtte P., Li S., Seefeldt M., and Delannay L. Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int. J. Plasticity 21 3 (2005) 589-624
Wang J., and Wagoner R.H. A new hexahedral solid element for 3D FEM simulation of sheet metal forming. In: Ghosh S., Castro J.M., and Lee J.K. (Eds). Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, Columbus. AIP Conf. Proc. 712 (2004) 2181-2186
Weber L., Moser B., Künzi H.U., and Mortensen A. Swift and inverse Swift effect in alumina fiber reinforced aluminium wires. Acta Mater. 48 (2000) 2451-2459
Wu H.C. On finite plastic deformation of anisotropic metallic materials. Int. J. Plasticity 19 (2003) 91-119
Wu P.D., Neale K.W., and Van der Giessen E. Simulation of the behaviour of fcc polycrystals during reversed torsion. Int. J. Plasticity 12 9 (1996) 1199-1219
Xiao H., Bruhns O.T., and Meyers A. Large strain responses of elastic-perfect plasticity and kinematic hardening plasticity with the logarithmic rate: Swift effect in torsion. Int. J. Plasticity 17 (2001) 211-235
Zhu Y.Y., and Cescotto S. Transient thermal and thermomechanical analysis by FEM. Comput. Struct. 53 2 (1994) 275-304
Zhu Y.Y., and Cescotto S. A fully coupled elasto-visco-plastic damage theory for anisotropic materials. Int. J. Solids Struct. 32 11 (1995) 1607-1641